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Abstract

The use of stochastic spectral expansions, specifically generalized polynomial chaos

(gPC) and Karhunen-Loéve (KL) expansions, is investigated for uncertainty quan-

tification in radiation transport. The gPC represents second-order random processes

in terms of an expansion of orthogonal polynomials of random variables. The KL

expansion is a Fourier-type expansion that represents a second-order random process

with known covariance function in terms of a set of uncorrelated random variables

and the eigenmodes of the covariance function. The flux and, in multiplying ma-

terials, the k-eigenvalue, which are the problem unknowns, are always expanded in

a gPC expansion since their covariance functions are also unknown. This work as-

sumes a single uncertain input—the total macroscopic cross section—although this

does not represent a limitation of the approaches considered here. Two particular

types of input parameter uncertainty are investigated: The cross section as a uni-

variate Gaussian, log-normal, gamma or beta random variable, and the cross section
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as a spatially varying Gaussian or log-normal random process. In the first case, a

gPC expansion in terms of a univariate random variable suffices, while in the sec-

ond, a truncated KL expansion is first necessary followed by a gPC expansion in

terms of multivariate random variables. Two solution methods are examined: The

Stochastic Finite Element Method (SFEM) and the Stochastic Collocation Method

(SCM). The SFEM entails taking Galerkin projections onto the orthogonal basis,

which yields a system of fully-coupled equations for the PC coefficients of the flux

and the k-eigenvalue. This system is linear when there is no multiplication and can

be solved using Richardson iteration, employing a standard operator splitting such

as block Gauss-Seidel or block Jacobi, or a Krylov iterative method, which can be

preconditioned using these splittings. When multiplication is present, the SFEM

system is non-linear and a Newton-Krylov method is employed to solve it. The SCM

utilizes a suitable quadrature rule to compute the moments or PC coefficients of

the flux and k-eigenvalue, and thus involves the solution of a system of independent

deterministic transport equations. The accuracy and efficiency of the two methods

are compared and contrasted. Both are shown to accurately compute the PC co-

efficients of the unknown, and numerical proof is provided that the two methods

are in fact equivalent in certain cases. The PC coefficients are used to compute the

moments and probability density functions of the unknowns, which are shown to be

accurate by comparing with Monte Carlo results. An analytic diffusion analysis, cor-

roborated by numerical results, reveals that the random transport equation is well

approximated by a deterministic diffusion equation when the medium is diffusive

with respect to the average cross section but without constraint on the amplitude

of the random fluctuations. Our work shows that stochastic spectral expansions are

a viable alternative to random sampling-based uncertainty quantification techniques

since both provide a complete characterization of the distribution of the flux and the

k-eigenvalue. Furthermore, it is demonstrated that, unlike perturbation methods,

SFEM and SCM can handle large parameter uncertainty.
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Chapter 1

Introduction

The development of stochastic transport methods is necessary for the physical con-

structs in which materials, initial conditions or boundary conditions are, or appear

to be, random. True material stochasticity can arise from fluctuations in material

properties, such as densities or isotopic abundance, or from heterogeneities in the ma-

terial itself. Uncertainties in material parameters, initial conditions and boundary

conditions, which then translate into uncertainties in the solution itself, can also be

treated using stochastic characterizations of problem inputs and unknowns. In nu-

clear engineering applications, the uncertainty inherent in experimentally determined

cross section data, for instance, necessitates evaluation of the resulting uncertainty

present in the numerical transport solution. This becomes particularly important

when the system under consideration contains fission sources. Generally, the compo-

sition of stochastic media or uncertain parameters are described in a statistical sense

by defining appropriate probability density functions. Solution methods are then

devised to obtain the moments, particularly means and variances, and probability

density functions (pdfs) of the flux and other unknowns.

The moments and pdfs may be found using sampling-based methods such as

1
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Monte Carlo in which large numbers of realizations are generated using the statis-

tical characterization, transport calculations are conducted for each realization, and

the results are averaged over all realizations. However, the method is extremely

computationally intensive because it involves the generation of thousands, possibly

millions, of transport solutions. Alternately, it is possible to average the transport

equation directly, thereby yielding a system of equations for the mean, and possibly

higher moments, of the flux. These equations are generally not closed, however, ne-

cessitating a closure model. These models produce sets of equations that are generally

not as time-consuming to solve as Monte Carlo, but they are strictly accurate only

in the physical regimes for which they were constructed and are not easily general-

ized. One such description was derived by Levermore, Pomraning and Vanderhaegen

for binary, or two-state, Markovian mixtures [1–4]. While their formalism has been

widely applied [5–16], it is not exact in time-dependent and scattering regimes since

it assumes that the transport process is Markovian in nature, which is true only in

time-independent, purely absorbing materials. More recently, Akcasu attempted to

amend the model to improve its accuracy in the presence of scattering, introducing

the so-called Modified-Levermore-Pomraning model [17]. The model is exact for cer-

tain classes of problems with scattering and preserves the correct atomic mix and

diffusion limits [18], but is plagued with difficulties when applied to finite slabs [19].

An exact system of closed equations for the average flux was also developed by

Prinja et al. for charged particle transport assuming a continuous Gaussian distri-

bution [20, 21] and Markovian binary statistics [22]. Selim et al. have also developed

analytic solutions for the first and second moments of the flux also assuming contin-

uous Gaussian statistics and anisotropic scattering in finite [23] and semi-infinite [24]

domains. Once again, however, these methods are not broadly applicable.

Traditionally, uncertainty quantification for nuclear engineering applications has

been approached using perturbation methods, particularly Gandini’s generalized per-

turbation theory (GPT) [25], and sampling-based methods (i.e., Monte Carlo) [26].
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GPT produces sensitivity coefficients that can then be used to conduct uncertainty

analysis. It was developed to address bilinear functions of the real and adjoint

neutron fluxes and involves solving the inhomogeneous “generalized adjoint” and

“generalized forward” transport equations. An equivalent theory, dubbed the equiv-

alent generalized perturbation theory (EGPT) [27], reduces the inhomogeneous GPT

equations to homogeneous ones, thereby simplifying solution. GPT and EGPT yield

sensitivity coefficients for the flux with respect to perturbed inputs that are subse-

quently used to quantify uncertainty. Perturbation methods are limited, however, in

that they can only deal with small perturbations and cannot yield higher-order sta-

tistical moments or pdfs of the output in question. Sampling-based methods yield

far more information about the uncertainty in the outputs—i.e., means, standard

deviations, pdfs and cumulative density functions—as well as detailed information

about the sensitivity of outputs to uncertain inputs. However, as stated before, they

require prohibitively large numbers of transport solutions.

Given the limitations of commonly used methods, it is desirable to develop so-

lution methods that possess the compactness of a closure model or perturbation

method while retaining the flexibility of the Monte Carlo approach. In order to

be more useful than existing methods, these new schemes must be solvable using a

relatively small number of transport solutions and must be easily generalizable to

a wide range of statistical characterizations. The development and investigation of

such methods form the basis for this research.

As in the methods previously described, heterogeneities or uncertainties in the

material are treated within a probabilistic framework. One approach is to use

Karhunen-Loève (KL) or polynomial chaos (PC) expansions to represent random

or uncertain properties in terms of a finite number of random variables, thereby

reducing the ‘random dimension’ to a finite number of random variables. These ex-

pansions have been used for many years and there exists a mature body of literature
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describing their properties and applications in a variety of fields to both stochas-

tic problems and uncertainty quantification. The KL expansion, due to Loève [28],

reproduces a second-order random process in an optimal expansion in terms of the

eigenmodes of its covariance function. Homogeneous chaos, a subset of PC, was first

conceived of by Wiener and employs Hermite polynomials in terms of normal ran-

dom variables as its basis [29]. Wiener’s concept was extended by Ogura to include

Charlier chaos for Poisson processes [30] and more recently by Xiu and Karniadakis’

generalized polynomial chaos (gPC) to include other polynomial bases belonging to

the Askey scheme [31, 32]. The bases were shown to be optimal when the statistics

of the random parameter corresponded to the weight function of the polynomial set.

Ghanem and Spanos [33] applied the KL and homogeneous chaos expansions to the

random quantities in their equation and, by taking Galerkin projections onto the

polynomial basis, devised the Stochastic Finite Element Method (SFEM). SFEM

employing homogeneous chaos has subsequently been applied to random interfaces

in soil layers [34], fluid flow in porous media and over rough terrain [35–39], heat

conduction [40], structural dynamics [41–48], acoustic scattering [49] and stochas-

tic eigenvalue problems [50–52]. It has also been applied to problems with log-

normal [40, 53] and other non-Gaussian [54, 55] statistics. SFEM has also been used

in collaboration with gPC for application to fluid flow problems [56, 57], heat con-

duction [58], stochastic elliptic partial differential equations [59, 60] and advection-

diffusion [61–63] problems, chemical reactor simulations [64] and flows in human

arterial networks [65]. Recently, SFEM has been also applied to radiative transfer

by Emery [66] and to neutron diffusion [67] and transport [68] by Williams et. al.

In this preliminary work, KL and Legendre chaos expansions were used to model

random cross sections in one-dimensional neutron diffusion and transport problems

in the absence of scattering, for which the equations could be solved analytically.

More recently, the Stochastic Collocation Method (SCM) was proposed by Math-

elin et al. [69] as an alternative approach to calculating the moments of the unknown
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or the PC coefficients themselves. The method employs an appropriate quadrature

set to directly compute the PC moments of the quantity in question. Instead of solv-

ing a coupled system, as in SFEM, the computation involves solving a sequence of

uncoupled deterministic equations, therefore the method is easily incorporated into

existing deterministic codes. The method has been successfully applied to elliptic

partial differential equations [70, 71], various problems in mechanics [72–74] and fluid

flow problems [69, 75–77]. There has also been some interest in using sparse grid or

Smolyak quadratures in cases where the stochastic quantities are functions of mul-

tiple random variables [78–80], which is generally more efficient than taking tensor

products of one-dimensional quadratures, particularly as the number of dimensions

increases.

The application of these methods is explored in the context of one-dimensional

steady-state neutron transport. Extension to multiple dimensions is straightforward

since the application of SCM, SFEM or Monte Carlo to the random variable(s) is

independent of the discretization of other variables in the system and is therefore left

for future research. In the physical scenario, the total cross section, σ, is assumed

to be an uncertain parameter and is therefore taken to be a function of the random

dimension. When σ is spatially invariant, which might physically represent uncer-

tainty in experimentally determined cross section data, it is represented as a single

second-order random variable and replaced by a gPC expansion [31, 32]. When σ

is spatially variant, which may physically represent density fluctuations in the ma-

terial, it can be described in terms of its KL expansion, although this approach is

limited since the KL expansion can only be applied when the covariance function of

the process is known. Furthermore, the random variables used in the expansion are

only independent if they are Gaussian, a fact which has important ramifications for

the solution process. The SFEM provides a means of application to the transport

equation. The PC expansion is first applied to random physical parameters as well

as the problem unknown. Projecting onto the orthogonal basis then yields a system
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of deterministic equations from which the expansion coefficients can be determined,

much as in the deterministic finite element method. Alternately, the PC coefficients

can be calculated using SCM.

The objective of this thesis is to conduct a preliminary investigation into the use

of spectral expansions for uncertainty quantification in radiation transport. Chap-

ter 2 contains a description of the transport formulation, including a discussion

of transport in multiplying media and randomness encountered, either as material

stochasticity or uncertainty, in physical parameters. There is also a general theo-

retical discussion of the KL expansion. Chapter 3 details the application of the KL

expansion to the transport equation for cross sections that are normal and log-normal

random processes using SCM. A study is performed on the accuracy and convergence

of the KL expansion and a detailed asymptotic analysis of the diffusion limit is con-

ducted with cross sections represented using the KL expansion. Chapter 4 contains

a discussion of gPC expansions, which have as their bases sets of orthogonal polyno-

mials. The application of SFEM and SCM to the transport equation for computing

the PC expansion coefficients of the flux is described, both when the cross section is

a random variable and when it is a random process represented by the KL expansion.

Several different iterative schemes are proposed for solving the SFEM equations and

a spectral analysis is conducted to determine their suitability. Analysis is also con-

ducted to determine the well-posedness of the SFEM equations. Chapter 5 contains

numerical results comparing the SFEM and SCM. Specifically, studies on the accu-

racy and convergence of the SFEM and SCM methods for cross sections that are

both random variables and random processes as well as a comparison of the compu-

tational efficiency of SFEM and SCM. Chapter 6 describes the application of SFEM

to multiplying media, which produces a coupled set of non-linear equations that are

solved using a Newton-Krylov method. Results for a uniform random variable are

compared with SCM. SCM is also applied for cross sections that are single random

variables of various distributions. The SCM is further applied to a reactor problem
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in which the enrichment is uncertain, varying randomly within the fuel, and is rep-

resented using a Gaussian random process. Finally, Chapter 7 contains conclusions,

including an evaluation of the suitability of the method for uncertainty quantification

in radiation transport, as well as a discussion of proposed future work.

7
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Transport Considerations

2.1 Deterministic Transport Formulation

The steady-state transport of mono-energetic neutrons through matter is described

by the following one-dimensional form of the Boltzmann transport equation [81]

µ
∂ψ(x, µ)

∂x
+ σ(x)ψ(x, µ) =

σs(x) + νσf (x)

2
φ(x) +Q(x, µ) (2.1)

where µ = cos(θ) is the direction cosine, σ(x) is the total macroscopic cross section,

σs(x) is the scattering cross section, σf (x) is the fission cross section, ν is the average

number of neutrons produced per fission, Q(x, µ) is a volume source, ψ(x, µ) is the

angular flux and

φ(x) =

∫ 1

−1

dµ′ ψ(x, µ′) (2.2)

is the scalar flux. A discrete ordinates, or SN, angular discretization is employed in

which the angular derivative is approximated using Gauss-Legendre quadrature with

weights wn and abscissas µn. Eq. 2.1 can then be written

µn

∂ψn(x)

∂x
+ σ(x)ψn(x) =

σs(x) + νσf (x)

2
φ(x) +Qn(x) (2.3)

8
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where ψn(x) = ψ(x, µn), Qn(x) = Q(x, µn) and

φ(x) =

N
∑

n=1

wnψn(x). (2.4)

Spatial discretization is accomplished using a linear discontinuous (LD) finite element

method, which employs linear basis functions and allows function discontinuity at

cell boundaries. A uniform grid with I cells is applied to the system, linear basis

expansions are assigned to the grid and material properties within individual spa-

tial cells are assumed to be homogeneous. The basis expansions are defined in the

following way. In space, for cell i

B+
i (x) =







x−x
i− 1

2

∆xi
if xi− 1

2
< x < xi+ 1

2

0 otherwise
(2.5)

B−
i (x) =







x
i+ 1

2
−x

∆xi
if xi− 1

2
< x < xi+ 1

2

0 otherwise
(2.6)

where xi− 1
2

and xi+ 1
2

are the left and right cell boundaries, respectively, and ∆xi is

the width of the cell (see Figure 2.1). The flux within a cell is now a discrete function

0
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2
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2

�
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�
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�
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i

r
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xi+ 1
2

@
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@

B−
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Figure 2.1: Basis Expansions

of angle and a linear function of space, and can be expressed as

ψn(x) = ψ+
n,iB

+
i (x) + ψ−

n,iB
−
i (x) (2.7)

and there are 2IN unknowns—a ψ+
n,i and a ψ−

n,i for each spatial cell i = 1, 2 . . . I and

angular abscissa n = 1, 2 . . .N .

9
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In order to obtain the LD transport equations, the fluxes in Eq. 2.3 are replaced

by the LD approximation given in Eq. 2.7. The inner product of this equation

is then taken with respect to the two basis functions, B+
i (x) and B−

i (x), yielding

two equations in terms of ψ+
n,i and ψ−

n,i for each angular abscissa, n, and spatial

cell, i. Derivative terms must be dealt with carefully at cell boundaries since the

trial functions are discontinuous at this point and the inner products are therefore

dependent on the direction in which the particles are traveling. For instance, the

inner product of the spatial derivative term in Eq. 2.3 with B−
i (x) for µn > 0 is taken

in the following way:

〈B−
i | ∂ψn(x)

∂x
〉 =

∫

i

dxB−
i (x)

∂ψn(x)

∂x

=
[

B−
i ψn

]

i
−
∫

i

dx
∂B−

i

∂x
ψn

=

[

xi+ 1
2
− x

∆xi

ψn

]

i

+

∫

i

dx
1

∆xi

ψn

= −ψ+
n,i−1 +

1

2

(

ψ+
n,i + ψ−

n,i

)

. (2.8)

First, integration by parts is applied to the integral. The definite integral term is

then evaluated at the cell boundaries. Although the solution itself is allowed to be

discontinuous at the boundary between cells i and i− 1, it is important to correctly

account for the passing of particles across cell boundaries. Otherwise, the scheme

will not be conservative. It follows therefore that at xi− 1
2
, given that µn > 0 and the

particles are therefore flowing from cell i − 1 to cell i, the incoming value for cell i

(ψ−
n,i) must equal the outgoing value of cell i−1 (ψ+

n,i−1). Nothing can be said about

the continuity of the solution itself, however, and it is still discontinuous. Adjacent

groups are therefore coupled in space wherever there is a spatial derivative term.

If there are I spatial cells and N discrete ordinates angles, the linear system

for the 2IN unknowns is solved iteratively because direct inversion of the matrix is

10
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prohibitively expensive. The so-called ‘source iteration’ takes the form

L~ψ(ℓ+1) = M(Ss + Sf )D~ψ(ℓ) + ~Q (2.9)

where ℓ is the iteration index, ~ψ and ~Q are vectors of flux unknowns and volume

source terms and are arranged such that

~ψ =
[

~ψ+
1

~ψ−
1

~ψ+
2

~ψ−
2 . . . ~ψ+

I
~ψ−

I

]T

where each vector ~ψ+
i contains ψ+

i at each of the N discrete angles and ~ψ−
i contains

ψ−
i at each of the N discrete angles

~ψ+
i =

[

~ψ+
i,1

~ψ+
i,2 . . . ~ψ+

i,N

]T

and ~ψ−
i =

[

~ψ−
i,1

~ψ−
i,2 . . . ~ψ−

i,N

]T

.

L is the streaming and removal operator, with Lψ respresenting the left-hand side of

Eq. 2.3, and has dimension 2IN × 2IN . Ss = σs

2
S and Sf =

νσf

2
S are the scattering

and fission source matrices where

S = I2I

and I2I is the 2I × 2I identity matrix. M is the moment-to-discrete operator

M = I2I ⊗

















1

1
...

1

















where the vector of ones is N elements long and ⊗ denotes the Kronecker product.

Therefore M has dimension 2IN × 2I and, in effect, places N copies of each scalar

flux into a vector the size of the angular flux. The discrete-to-moment operator

multiplies the angular flux to form a vector containing scalar flux values, D~ψ = ~φ

D = I2I ⊗
[

µ1 µ2 . . . µN

]

11
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thus D is of dimension 2I × 2IN and

~φ =
[

φ+
1 φ−

1 φ+
2 φ−

2 . . . φ+
I φ−

I

]T

.

When a system contains fission sources (i.e., σf > 0), it is desirable to calcu-

late the criticality. If a system is critical, the number of neutrons produced in the

successive generations is a constant, indicating a self-sustaining, steady state chain

reaction. If the system is super- or subcritical, more or fewer neutrons, respectively,

are produced in successive generations and the chain reaction will grow or die out.

Criticality is indicated by the multiplication eigenvalue, k:

k < 1 subcritical,

k = 1 critical,

k > 1 supercritical.

The k-eigenvalue is explicitly incorporated into the transport equation by dividing

the fission term

L~ψ = MSsD~ψ +
1

k
MSfD~ψ. (2.10)

It can then be calculated using the traditional power iteration [82] or a more advanced

Krylov subspace method such as the Restarted or Implicitly Restarted Arnoldi Meth-

ods [83]. Rearranging Eq. 2.10 and applying D to both sides, the multiplication

eigenvalue problem can be written as

k~φ = A~φ (2.11)

where A = (I−DL−1MSs)
−1DL−1MSf . The power iteration proceeds as follows:

~φ(ℓ+1) =
A~φ(ℓ)

‖A~φ(ℓ)‖
(2.12a)

k(ℓ+1) = ~φ(ℓ)A~φ(ℓ) (2.12b)

where ℓ is the iteration index and ~φ(0) is initialized randomly.

12
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2.2 Stochastic Transport Formulation

There are two types of uncertainty in nuclear systems: Aleatory and epistemic.

Aleatory uncertainty refers to randomness in the behavior of the system. In a trans-

port setting it is often encountered as variability in the material itself, e.g., the

presence of more than one material in the domain. Epistemic uncertainty stems

from lack of knowledge about the correct values of input parameters, for instance,

experimental uncertainty in the measured values of various physical parameters, e.g.,

the number density, cross section, fuel enrichment, etc. While the source of the un-

certainty determines how uncertain inputs are represented and affects the subsequent

interpretation of output uncertainties, it does not affect the solution process itself.

The focus of this work is quantifying the effect of uncertainty, whether aleatory or

epistemic, in the macroscopic cross section(s), σ, on the flux. It is assumed that

the probability density function (pdf) of the cross section(s), P (σ), where P (σ)dσ

is the probability that the cross section lies between σ and σ + dσ, is known. It

then remains to compute the moments and the pdf of the flux. The moments can be

thought of as ‘ensemble averages’ in the random dimension, denoted 〈·〉, or averages

over all statistically possible ‘realizations’ of the cross section.

The randomness in the cross section, which then translates into randomness in the

flux, can be incorporated mathematically into the transport equation by introducing

an additional dimension—the random dimension, ω ∈ Ω, where Ω is the space of

random events. The stochastic version of the 1-D transport equation (Eq. 2.3) can

then be written as

µn

∂ψn(x, ω)

∂x
+ σ(x, ω)ψn(x, ω) =

σs(x, ω) + νσf (x, ω)

2
φ(x, ω) +Qn(x) (2.13)

if all of the cross sections are to be random and spatially variant. The solution of

this equation is the goal of this work, in which three different methods are employed:

the sampling-based Monte Carlo method, the Stochastic Collocation Method (SCM)

13
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and the Stochastic Finite Element Method (SFEM).

2.3 The Karhunen-Loève Expansion

The Karhunen-Loève (KL) expansion represents a second-order random process,

σ(x, ω), in a Fourier-type expansion in terms of the eigenvalues and eigenfunctions

of its covariance function, Cσ(x1, x2). Given that the covariance function is known,

the expansion allows the random process, which is a function of both the spatial and

the random dimensions, to be represented in terms of finite number of random vari-

ables and continuous functions in space. In effect, it provides a systematic manner in

which to ‘discretize’ the random dimension and the accuracy of the approximation

is quite simply improved by retaining additional random variables in the expansion.

The random process, σ(x, ω), is defined to be a function of x ∈ X, where X is the

spatial domain, and ω ∈ Ω, where Ω is the space of random events. It has expecta-

tion value E [σ(x)] = 〈σ(x)〉 and, for notational clarity, a zero-mean ‘random part’

σ̃(x, ω) = σ(x, ω) − 〈σ(x)〉. As a second-order random process on the domain X, σ

must have a finite variance

E
[

σ̃2(x)
]

<∞, x ∈ X (2.14)

and covariance

Cσ(x1, x2) = E [σ̃(x1)σ̃(x2)] , x1, x2 ∈ X. (2.15)

While each random process has a unique covariance, a covariance may correspond

to numerous random processes [28]. The process is also required to be continuous

in the quadratic mean (q.m. continuous)—i.e., limh→0E [(σ(x+ h) − σ(x))2] = 0,

x ∈ X—to ensure that the covariance is also continuous on X ×X.

The KL expansion separates the random and spatial dimensions so that they can

14
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be dealt with separately using a generalized Fourier series of the form

σ(x, ω) =
∞
∑

k=1

ak(ω)ϕk(x), (2.16)

where {ak(ω)} is a set of orthogonal random variables and {ϕk(x)} is a set of deter-

ministic functions, and is convergent in the quadratic mean, i.e.,

lim
K→∞

E





(

σ(x, ω) −
K
∑

k=1

ak(ω)ϕk(x)

)2


 = 0, uniformly onX. (2.17)

It expands a second-order random process in terms of a numerable set of orthogonal

random variables, {ξk(ω)}, which are in effect a discretization of the random dimen-

sion, and the orthogonal eigenfunctions and eigenvalues of the covariance function,

where the eigenfunctions are functions of the spatial dimension. Since the covariance

function is, by definition, bounded, symmetric and positive definite, by Mercer’s

theorem it has a uniformly convergent expansion [28]

Cσ(x1, x2) =

∞
∑

k=0

λkϕk(x1)ϕk(x2) (2.18)

where {λk} are the eigenvalues and {ϕk(x)} the eigenfunctions of the covariance

kernel. They satisfy the following homogeneous Fredholm integral equation of the

second kind

∫

X

Cσ(x1, x2)ϕk(x2)dx2 = λkϕk(x1). (2.19)

The {ϕk(x)} form a complete, orthogonal set which can be normalized by forcing

∫

X

ϕk(x)ϕℓ(x)dx = δkℓ (2.20)

and the eigenvalues, {λk}, form a countably infinite set of positive real numbers.

These sets can be used to expand the random process, analogous to Eq. 2.16, as

σ(x, ω) = 〈σ(x)〉 +

∞
∑

k=1

√

λkϕk(x)ξk(ω). (2.21)
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The ξk(ω) are given explicitly by

ξk(ω) =
1√
λk

∫

X

σ̃(x, ω)ϕk(x)dx (2.22)

and are uncorrelated with zero mean and unit variance [33]:

〈ξk〉 = 0 (2.23)

〈ξkξl〉 = δkl. (2.24)

This expansion has the following advantages:

• It is optimal in the sense that the mean-square error that results from rep-

resenting σ(x, ω) in terms of a finite number of eigenfunctions is minimized.

This is true regardless of the probabilistic structure of the process, provided

that its variance is finite [28]. Any other generalized Fourier representation

of σ(x, ω) in terms of another linear combination of functions will have larger

mean-square error than the KL expansion when the same number of terms are

retained [33].

• If σ(x, ω) is a Gaussian process, then the random variables, {ξk(ω)}, form a

Gaussian vector and any subset of {ξk(ω)} is jointly Gaussian [28]. Further-

more, because the variables are always uncorrelated, the fact that they are

Gaussian implies that they are also independent and are given by

P (ξk) =
1√
2π

exp

(

−ξ
2
k

2

)

, ξk ∈ [−∞,∞]. (2.25)

When σ(x, ω) is not given in terms of a Gaussian process, the {ξk(ω)} are not

necessarily independent [33]. This has important implications for our solution

method, as will be discussed later.
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Chapter 3

The Karhunen-Loéve Expansion:

Numerical Results

As discussed in the previous section, the Karhunen-Loève (KL) expansion represents

a second-order random process in an expansion in terms of the eigenvalues and eigen-

functions of its covariance. In section 3.1, a covariance function is selected and its

eigenmodes are derived. Section 3.2 contains a description of the numerical imple-

mentation for cross sections that are both normal and log-normal random processes.

In section 3.3, the convergence of the KL expansion is examined for both the rod

model, which can be compared against an analytic solution, and S8, which is com-

pared against a Monte Carlo solution. Results are computed using Gauss-Hermite

quadrature, the convergence of which is also examined. And finally, an asymptotic

analysis of the diffusion limit is conducted in section 3.4.
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3.1 The Exponential Covariance Function

Use of the KL expansion relies on our ability to solve Eq. 2.19 for ϕk(x) and λk, so

a savvy choice of Cσ can simplify the solution process considerably. We have chosen

to use the exponential kernel, which represents the first-order Markovian process,

which has been used extensively in a variety of fields [33],

Cσ(x1, x2) = vσ exp

(−|x1 − x2|
λc

)

, (3.1)

where vσ is the variance and λc is the correlation length, which is a measure of the

length over which x1 and x2 become independent. As λc → ∞, the cross section is

fully correlated throughout the domain and therefore has no spatial structure. The

cross section is a univariate random variable. As λc → 0, the cross section at each

spatial point is completely independent of every other point in the system, though

it is still random, and the cross section therefore has considerable spatial structure.

The eigenfunctions and eigenvalues we seek satisfy the following integral equation,

found by substituting Eq. 3.1 into Eq. 2.19

vσ

∫ L

0

exp

(−|x1 − x2|
λc

)

ϕ(x2)dx2 = λϕ(x1), x1, x2 ∈ [0, L]. (3.2)

This equation is easily converted into a second-order differential equation with ho-

mogeneous boundary conditions by refashioning the integral term as

∫ L

0

exp

(−|x1 − x2|
λc

)

ϕ(x2)dx2 =

∫ x

0

exp

(−(x1 − x2)

λc

)

ϕ(x2)dx2 +

∫ L

x

exp

(

(x1 − x2)

λc

)

ϕ(x2)dx2 (3.3)

and differentiating twice with respect to x1 to obtain

ϕ′′(x) + α2ϕ(x) = 0, (3.4)

where

α2 =
2vσ − λ

λc

λcλ
.
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The boundary conditions are found by evaluating Eq. 3.3 and its first derivative at

x = 0 and x = L and rearranging to obtain

λcϕ
′(0) − ϕ(0) = 0 (3.5a)

λcϕ
′(L) + ϕ(L) = 0. (3.5b)

A nontrivial solution for Eq. 3.4 exists for α2 ≥ 0, and is given by

ϕ(x) = a1 cos(αx) + a2 sin(αx). (3.6)

Application of the boundary conditions yields the following transcendental equation

for α:

tan(αL) =
2αλc

λ2
cα

2 − 1
. (3.7)

This equation has numerous solutions, αk, each of which correspond to an eigenvalue

λk =
2vσλc

α2
kλ

2
c + 1

(3.8)

and an eigenfunction

ϕk(x) = Ak (sin(αkx) + λcαk cos(αkx)) , (3.9)

where Ak is chosen such that

∫ L

0

ϕ2
k(x)dx = 1. (3.10)

Fig. 3.1(a) shows the first ten eigenvalues of the covariance function, λk, for

various values of λc. As can be seen, the eigenvalues decay monotonically as k in-

creases. The larger the correlation length —i.e., the stronger the correlation between

points—the faster the eigenvalues decay and the more dominant the largest eigen-

value, λ1, becomes. Thus, when the eigenvalues decay rapidly, the first few terms in
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..

(a) Eigenvalues
..

(b) Eigenfunctions (λc = 1 cm)

Figure 3.1: Eigenfunctions and Eigenvalues for the Exponential Covariance Function
(L = 5 cm, vσ = 2 cm−2)

the expansion (Eq. 2.21) contribute largely to the sum while later terms are less sig-

nificant. Therefore it may be possible to represent σ(x, ω) faithfully with a relatively

brief expansion. When the eigenvalues decay slowly, however, the terms are more

equally weighted and many more terms must be retained. Also shown in Fig. 3.1(b)

are the eigenfunctions, ϕk, as a function of x. As k increases, the functions become

more oscillatory. Thus, when the larger eigenvalues dominate, we would expect that

each successive term in the expansion will have little effect on the magnitude of the

sum because the corresponding eigenvalues are small and will instead cause small-

scale oscillations.

3.2 Numerical Implementation

We now come to the heart of the matter—solution of the random transport equation.

While theoretically we could apply the KL expansion to the flux itself, we could not

calculate the expansion coefficients since its covariance function is unknown. Instead,

we rewrite the transport equation as a function of the random dimension, ω, and
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expand the cross section as discussed previously

µ
∂ψ(x, µ, ω)

∂x
+ σ(x, ω)ψ(x, µ;ω) =

cσ(x, ω)

2

∫ 1

−1

dµ′ψ(x, µ′;ω) +
Q(x, µ)

2
. (3.11)

As can be seen, only the total cross section, σ(x, ω), and by extension the flux,

ψ(x, µ;ω), are random. The scattering ratio, c, is taken to be a deterministic quan-

tity. We stress that this is not a necessary condition; rather, it allows us to focus on

the implementation and effectiveness of the KL expansion.

3.2.1 Normal Random Processes

The cross section is represented using the KL expansion, truncated at order K, as

σ(x, ω) = 〈σ(x)〉 + σ̃(x, ω) = 〈σ(x)〉 +
K
∑

n=1

√

λkϕk(x)ξk(ω). (3.12)

Since we are restricting our consideration to a Gaussian random process, the set

{ξk(ω)}K
1 is made up of identical, independent random variables given by Eq. 2.22.

If the KL expansion is used to represent the cross section, the flux also becomes a

function of these variables, i.e., ψ(ω) = ψ(ξ1(ω), . . . , ξK(ω)). The moments of ψ are

therefore given by

〈ψn〉 =

∫ ∞

−∞
dξ1 · · ·

∫ ∞

−∞
dξK P (ξ1, . . . , ξK)ψn(ξ1, . . . , ξK)

=

∫ ∞

−∞
dξ1P (ξ1) · · ·

∫ ∞

−∞
dξKP (ξK)ψn(ξ1, . . . , ξK) (3.13)

where P (ξ1, . . . , ξK) =
∏K

k=1 P (ξk) by the independence of the {ξk}. Each value

of ψ(ω) corresponds to a unique combination of values, {ξk(ω)}K
1 , which physically

corresponds to a ‘realization’ of the material. Obviously, there are an infinite number

of possible realizations, therefore is it necessary to approximate each integral in

Eq. 3.13 with a finite number of terms using numerical integration. Monte Carlo

is one possibility, but it would require an inordinately large number of realizations.

21



www.manaraa.com
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Alternately, the Stochastic Collocation Method (SCM) employing a tensor product

of one-dimensional Gauss-Hermite quadrature rules could be used to evaluate the

integral in Eq. 3.13 since the ξk are independent

〈ψn〉 =

M1
∑

m1=1

wm1 · · ·
MK
∑

mK=1

wmK
ψn(θm1 , . . . , θmK

) (3.14)

where the K is the order of the KL expansion, Mk is the quadrature order for

the integration over ξk(ω), and the wmk
and θmk

are the Gauss-Hermite quadrature

weights and abscissas. Thus, evaluation of this integral requires the solution of

M1M2 . . .MK uncoupled transport equations, or MK equations if M = M1 = M2 =

· · · = MK . It is clear that the independence of the {ξk(ω)} simplifies the solution

process considerably—if they were dependent, a K-dimensional quadrature would

be necessary.

In order to establish the accuracy of the solution, it is desirable to compare it with

an exact solution. Such a solution was developed by Prinja and Gonzalez-Aller [21]

in which they assumed Gaussian distributed density fluctuations and a semi-infinite,

source-free medium. While the equation cannot generally be written in standard

transport form, in the special case of the rod-model the equation simplifies to

∂〈ψ+〉
∂x

+ [〈σ〉 − (1 − c)C0(x)] 〈ψ+〉 =
c〈σ〉

2
〈φ〉 (3.15a)

−∂〈ψ
−〉

∂x
+ [〈σ〉 + (1 − c)C0(x)] 〈ψ−〉 =

c〈σ〉
2

〈φ〉 (3.15b)

where 〈φ〉 = 〈ψ+〉 + 〈ψ−〉 and C0(x) is related to the covariance function by

C0(x) =

∫ x

0

Cσ(x
′)dx′. (3.16)

3.2.2 Log-Normal Random Processes

The KL expansion for Gaussian processes is given in terms of the ξk, which are dis-

tributed according to the normal distribution from which negative values are drawn
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with equal probability as positive values. It is therefore possible, and indeed likely,

that the KL expansion will yield cross sections that are negative in all or part of

the domain in some instances, an unphysical result. As the variance increases with

relation to the mean, the number of negative cross sections produced will increase as

well. Thus, this method can only be applied to a small subset of stochastic materials

for which the variance of the cross section is some small percentage of its mean.

Alternately, the cross section could be taken to be a log-normal process, given by

σ(x, ω) = ew(x,ω) (3.17)

where w(x, ω) is a Gaussian random process with KL expansion

wKL(x, ω) = 〈w(x)〉 +

K
∑

k=1

√

λkϕk(x)ξk(ω). (3.18)

Thus,

σKL(x, ω) = exp

(

〈w(x)〉 +

K
∑

k=1

√

λkϕk(x)ξk(ω)

)

. (3.19)

Given Eq. 3.19 and the mean, 〈σ〉, and variance, vσ, of the log-normal cross section,

it is possible to calculate the covariance function of σ as well as 〈w〉 and vw for use

in the KL expansion of w. The mean and variance of w are given by

〈w〉 = ln

(

〈σ〉2
√

vσ + 〈σ〉2

)

(3.20)

vw = ln

(

vσ

〈σ〉2 + 1

)

. (3.21)

The covariance function of σ is given by

Cσ(x, x
′) = 〈σ〉2

[

(〈σ2〉
〈σ〉2

)ρw(x,x′)

− 1

]

(3.22)

where ρw(x, x′) is the correlation function of w

ρw =
Cw(x, x′)

vw

= exp

(−|x1 − x2|
λc

)

. (3.23)
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The correlation function of σ is then found to be

ρσ(x, x′) =
Cσ(x, x

′)

vσ

=

(

〈σ2〉
〈σ〉2

)ρw(x,x′)
− 1

〈σ2〉
〈σ〉2 − 1

. (3.24)

Fig. 3.2 shows ρσ plotted vs. ρw for various values of 〈σ2〉
〈σ〉2 . When 〈σ2〉

〈σ〉2 ≈ 1, the

two correlation functions are virtually identical and as 〈σ2〉
〈σ〉2 gets larger, they become

increasingly dissimilar with ρσ < ρw everywhere except the endpoints where ρσ =

ρw = 0 and ρσ = ρw = 1.

Figure 3.2: ρσ vs. ρw for various values of 〈σ2〉
〈σ〉2
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3.3 Accuracy and Convergence of the KL Expan-

sion for Gaussian and Log-Normal Random

Processes

Results for the KL expansion were obtained using a linear discontinuous discretiza-

tion in space. In all cases, 〈σ〉 = 5 cm−1, vσ = 2 cm−2, L = 5 cm, λc = 1 cm, c = 0.5

and I = 250 spatial cells. An isotropic incident source was placed on the left edge

and vacuum boundary conditions were assumed on the right edge. The numerical

KL solutions were obtained using the SCM, implemented using tensor products of

the one-dimensional Gauss-Hermite quadrature rule, {wm, θm}, m = 1, . . . ,M . The

flux was obtained by solving the discretized version of Eq. 3.11 for ψ(θm1 , . . . , θmK
)

and numerically integrating using Eq. 3.14. In order to test the accuracy of the KL

expansion, results were first obtained using the rod model (i.e., an angular quadra-

ture with two abscissas, µ = ±1) and compared against the semi-infinite medium

solution given in Eqs. 3.15a and 3.15b. Once the accuracy of the KL expansion was

established, results were then obtained for an S8 discrete ordinates discretization in

angle for both normal and log-normal random cross sections with convergence of the

quadrature determined by comparison with a Monte Carlo solution.

3.3.1 Rod Model: Comparison of SCM with an Analytic

Solution

Fig. 3.3(a) shows the scalar flux for K=0 (i.e., the deterministic solution where

σ(x, ω) = 〈σ〉) as well as the semi-infinite medium and KL expansion solutions.

While the semi-infinite medium solution is exact when the slab is semi-infinite, the

slab in this case is clearly finite, and it is not expected that the KL solution will

ever exactly duplicate the solution. However, for an optically thick slab such as the
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Chapter 3. The Karhunen-Loéve Expansion: Numerical Results

one examined here, the results should be similar enough to confirm that the KL

expansion gives a correct solution. As can be seen, the semi-infinite and KL results

are similar. Fig. 3.3(b) shows the relative error in the scalar flux for the KL expansion

solution as compared with the semi-infinite medium solution. The quadrature order,

M, seems to have a greater effect on the accuracy of the solution than the KL order

on the right-hand side of the slab whereas the opposite is true close to the incident

edge. The fact that the accuracy of the solution is dominated by the order of the

quadrature far from the incident edge but not close to it indicates that as the beam

penetrates the slab, the flux becomes an increasingly higher-order function of the

random variables. The incoming beam is deterministic, but its behavior becomes

increasingly random as the beam traverses the slab due to the uncertainty inherent

in the cross section. The flux appears to be converged for K = 5 and M = 6 while the

standard deviation, shown in Fig. 3.5(a), requires K = 5 and M = 8. This indicates

that the first moment, or mean, of the flux is in fact a lower order function of the

random variables than the second moment of the flux, 〈φ2〉.

As can be seen in Figs. 3.4 and 3.5(b), similar results are obtained for c = 0.9,

with the flux requiring M = 4 for convergence while the standard deviation required

M = 6. Also, for this larger scattering ratio, a smaller quadrature order is necessary

to achieve convergence—for the flux, M = 4 as compared with M = 6 for c = 0.5,

and for the standard deviation, M = 6 as compared with M = 8 for c = 0.5. Once

again, this indicates that in diffusive materials, the moments of the flux are lower

order functions of the random variables than they are in non-diffusive materials.
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Figure 3.3: Scalar Flux and its Relative Error for the Rod Model (c = 0.5)
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3.3.2 S8 Angular Discretization: Comparison of SCM with

Monte Carlo

Normal Distribution

Results were also obtained for an S8 angular quadrature order, for which the scalar

flux was judged to be converged. Since there is no analytic solution in this case, the

SCM results are compared against Monte Carlo results, which are denoted in the

legend as K = 5(·). The number in parentheses denotes the number of realizations

required to achieve a sample standard deviation of 10−2. The flux and standard

deviation for c = 0.5 and c = 0.9 are shown in Figs. 3.6 and 3.7, respectively. Results

are similar to those obtained for the rod model. Particularly, it takes fewer SCM

quadrature points to converge the scalar flux than the standard deviation and the

larger the scattering ratio, the more rapidly the SCM quadrature converges. Also,

the KL expansion order seems to have a greater effect on the accuracy of the solution

at the incident edge while SCM quadrature order seems to have the greatest effect

at the right side of the slab. S8 also requires larger SCM quadrature orders than the

rod model to converge the same problem.

As was mentioned in Section 3.2.2, there is the distinct possibility that some of

the cross sections generated by the KL expansion will be negative for some values of

x. Table 3.1 shows the number of transport equations required by the KL expansion

and the number of these that must be discarded due to negative cross sections for

various KL and SCM quadrature orders for vσ = 2 cm−2, L = 5 cm and λc = 1 cm.

The larger the KL expansion and SCM quadrature order, the larger the percentage

of equations that will be discarded. For K = 5 and M = 8, for instance, 34.47% of

the equations have negative cross sections. Despite the fact that so many terms were

discarded, the standard deviation in Fig. 3.6(b) shows excellent agreement with the

Monte Carlo result. This is due to the shape of the normal distribution from which
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Figure 3.6: Normal Cross Section: Scalar Flux and its Relative Error for S8 (c = 0.5,
vσ = 2.0 cm−2)

the ξk are sampled and the structure of Gauss-Hermite quadrature. The negative

cross sections correspond to the most negative quadrature abscissas, for which the

distribution, and by extension the quadrature weights, are very small. The final
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Figure 3.7: Normal Cross Section: Scalar Flux and its Relative Error for S8 (c = 0.9,
vσ = 2.0 cm−2)

column in Table 3.1 shows the sum of the weights for those terms in which the cross

section is positive throughout the domain. When all of the cross sections are positive

and all terms are kept in the expansion, the weights should sum to one. As can be
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seen, even when more than a third of the equations have to be discarded for K = 5

and M = 8, the weights still sum to 0.99962517, a deviation of less than 3.75× 10−4.

Therefore, the discarded terms would have little impact on the total sum even if they

could be included. Thus, while negative cross sections are not desirable and will most

definitely have some impact on the accuracy of the solution, the effect appears to be

negligible in these cases.

KL quadrature number equations sum of the
order order of equations discarded GH weights

1 2 2 0 1.00000000

1 4 4 0 1.00000000

1 6 6 0 1.00000000

1 8 8 0 1.00000000

1 10 10 0 1.00000000

3 2 8 0 1.00000000

3 4 64 0 1.00000000

3 6 216 24 0.99993264

3 8 512 106 0.99992143

3 10 1000 288 0.99991428

5 2 32 0 1.00000000

5 4 1024 58 0.99968662

5 6 7776 1760 0.99963450

5 8 32768 11294 0.99962517

5 10 100000 42592 0.99961537

Table 3.1: Number of Equations Required for the KL Expansion (vσ = 2 cm−2, L = 5
cm and λc = 1 cm)

33



www.manaraa.com
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Log-Normal Distribution

SCM results were also obtained for the KL expansion of the log-normal cross section

for 〈σ〉 = 5 cm−1, vσ = 2 cm−2, L = 5 cm, λc = 1 cm and I = 250, as above, and

compared against Monte Carlo. In this case, the cross section always remains positive

since the cross section only ranges between zero and infinity. In comparing Fig. 3.6

with Fig. 3.8 and Fig. 3.7 with Fig. 3.9 it can be seen that the SCM quadrature

converges more rapidly for the log-normal distribution than the normal distribution.

This is due to the fact that the log-normal cross section distribution is only semi-

infinite rather than infinite in extent like the normal cross section: The lack of a long

tail on the negative side of the peak combined with the fact that all of the points

in the SCM quadrature integration can be included contributes to this more rapid

convergence. The convergence of the KL expansion appears to be equivalent to that

for the normal cross section.

Fig. 3.10 shows similar results for vσ = 25.0 cm−2. For this larger variance, it is

necessary to use a KL order of 9 to get a converged solution, compared with a KL

order of 5 for vσ = 2.0.
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3.4 Diffusion Analysis

3.4.1 Normal Random Processes

Also of interest is the behavior of the flux in the diffusion limit. Only results are

shown in this section; for a detailed derivation of the diffusion equations listed below,
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Figure 3.8: Log-Normal Cross Section: Scalar Flux and its Relative Error for S8

(c = 0.5, vσ = 2.0 cm−2)
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see Appendix B. The analysis was conducted for both the semi-infinite medium and
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Figure 3.9: Log-Normal Cross Section: Scalar Flux and its Relative Error for S8

(c = 0.9, vσ = 2.0 cm−2)
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the KL expansion using standard diffusion scalings:

〈σ〉 ∼ O
(

1

ǫ

)

, (1 − c) ∼ O(ǫ2), Q ∼ O(ǫ) (3.25)
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Figure 3.10: Log-Normal Cross Section: Scalar Flux and its Relative Error for S8

(c = 0.5, vσ = 25.0 cm−2)

37



www.manaraa.com
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for ǫ≪ 1. The scaling of the variance presents an interesting dilemma. If

vσ ∼ O
(

1

ǫ2

)

so that the standard deviation grows in proportion to the mean, then a stochastic

diffusion equation is obtained:

−DKL(x, ω)
∂2φ(x, ω)

∂x2
+ σa,KL(x, ω)φ(x, ω) = Q(x) (3.26)

where DKL(x, ω) = 1
3σKL(x,ω)

and σa,KL(x, ω) = (1 − c)σKL(x, ω). If instead the

variance of the cross section is scaled in the same way as the mean,

vσ ∼ O
(

1

ǫ

)

,

so that the standard deviation grows at a slower rate than the mean as ǫ becomes

small, Eqs. 3.11 and 3.15a-3.15b yield the following deterministic diffusion equations,

respectively:

− 1

〈σ〉
∂2φ(x)

∂x2
+ 〈σa〉φ(x) = 0 (3.27)

and

−〈D〉∂
2φ(x)

∂x2
+ 〈σa〉φ(x) = Q(x) (3.28)

where D = 1
3〈σ〉 for S-N and D = 1

〈σ〉 for rod geometry. These equations are diffusion

equations given for the mean total and absorption cross sections and are independent

of the variable ω. Furthermore, they are identical to the diffusion equations obtained

when the variance is taken to be O(1). Thus, in diffusive materials where the variance

and mean of the cross section are on the same order or the variance is lower order than

the mean, the flux is in fact deterministic. When the diffusion scalings are introduced

to the numerical implementation, as ǫ becomes very small, each individual realization

limits to a nonrandom solution which is the same for each realization and is, in fact,

the diffusion solution given by Eq. 3.28.
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The diffusion scalings were introduced to the numerical implementation and φ

was plotted for 10 individual KL realizations. Four different plots are shown in

Fig. 3.11(a), corresponding to ǫ = 2−n, n = 0, 5, 10, 15. Results are shown for a KL

order of 5, 〈σ〉 = 5 cm−1, vσ = 2 cm−2, λc = 1 cm, c = 0.5, L = 5 cm, N = 8 and

I = 250. As predicted by the analysis, as ǫ gets small, each individual realization

limits to a nonrandom solution. This solution is the same for each realization and

is, in fact, the diffusion solution given by Eq. 3.28. Although the plots are not

shown here, this result appears to be independent of the number of terms in the KL

expansion and SN quadrature order.

It is also revealing to examine the norm of the relative difference between the

numerical and diffusion solutions for various ǫ,

δ(n) =
‖φdiff − 〈φ〉(n)‖2

‖φdiff‖2

,

where 〈φ〉(n) and φdiff are the scaled semi-infinite medium or KL and diffusion so-

lutions, respectively. Fig. 3.11(b) shows δ(n) plotted vs. n, where ǫ = 2−n, for 25

individual realizations for the same physical parameters as in Fig. 3.11(a). As can

be seen, the relative difference in each individual realization scales as
√
ǫ.

The same analysis was conducted on the semi-infinite medium solution, results

for which are shown in Fig. 3.12 for 〈σ〉 = 5 cm−1, vσ = 2 cm−2, λc = 1 cm, c = 0.5,

L = 5 cm and I = 250. In this case the relative difference scales as ǫ, which seems

counter intuitive considering it scales as
√
ǫ for the KL expansion when the same

scalings are used. However, while C0(x) in Eqs. 3.15a and 3.15b is scaled as 1
ǫ

since

vσ appears explicitly in its definition (see equations 3.1 and 3.16), σ̃(x, ω) in Eq. 3.12

(which is, in turn, substituted into Eq. 3.11) is a function of
√
vσ through the

√
λk

term (see the definition of λk in Eq. 3.8) and is therefore scaled as 1√
ǫ
. Therefore,

the asymptotic expansion of φ for the KL expansion contains half-powers of ǫ

φ =

∞
∑

n=0

ǫ
n
2 φ(n) (3.29)
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while the asymptotic expansion of φ for the semi-infinite medium contains only in-

teger powers of ǫ

φ =

∞
∑

n=0

ǫnφ(n). (3.30)

Thus, while in either case φ(0) is the diffusion solution, the first correction term, φ(1),

which we would expect to be of the same order of magnitude as δ(n), is multiplied

by
√
ǫ for the KL expansion and ǫ for the semi-infinite medium.
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(a) Scalar Flux for 10 KL Realizations
and Diffusion

(b) Relative L2 Norm of the Difference Between the Nu-
merical and Diffusion Solutions for 25 KL Realizations

Figure 3.11: Diffusion Limit for a Normal Random Process
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Figure 3.12: Relative L2 Norm of the Difference Between the Numerical and Diffusion
Solutions for a Normal Random Process and Semi-Infinite Medium

3.4.2 Log-Normal Random Processes

Once again, for a detailed derivation of the diffusion analysis given below, see Ap-

pendix B. The asymptotic analysis is slightly more complicated for a log-normal

random process because it is not immediately obvious how the cross section should

be scaled. Eq. 3.19 can also be written

σKL(x, ω) = e〈w(x)〉e
√

vw

PK
k=1

√
γkϕk(x)ξk(ω)

= e〈w(x)〉e
√

vwρ(x,ω) (3.31)

where γk = λk

vw
and the KL expansion has been replaced by ρ(x, ω). Clearly, from

Eq. 3.20,

e〈w(x)〉 =
〈σ〉

√

vσ

〈σ〉2 + 1
=

〈σ〉√
y + 1

(3.32)
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where y = vσ

〈σ〉2 . Applying the scalings from Eq. 3.25 and setting

vσ ∼ O
(

1

ǫ

)

yields

y =
ṽσ/ǫ

˜〈σ〉2/ǫ2
= ǫ

ṽσ

˜〈σ〉2
= ǫỹ,

thus

e〈w(x)〉 =
˜〈σ〉

ǫ
√
ǫỹ + 1

≈
˜〈σ〉
ǫ

(

1 − ǫỹ

2
+

3(ǫỹ)2

8
+ O(ǫ3)

)

(3.33)

where the square root has been expanded in a Taylor series about ǫỹ = 0. The second

term in Eq. 3.31, given Eq. 3.21, can be written

e
√

vwρ(x,ω) = e
√

ln(y+1)ρ(x,ω). (3.34)

Clearly, another Taylor series is required in order to apply the scalings and proceed

with the analysis. The series is taken about y = 0:

e
√

ln(y+1)ρ ≈ 1 + ρ
√
y +

ρ2

2
y +

(

ρ3

6
+
ρ

4

)

y
3
2 +

ρ4 − 6ρ2

24
y2 + O(y

5
2 ). (3.35)

Thus,

e
√

vwρ(x,ω) ≈ 1+ ρ
√

ǫỹ+
ρ2

2
ǫỹ+

(

ρ3

6
+
ρ

4

)

(ǫỹ)
3
2 +

ρ4 − 6ρ2

24
(ǫỹ)2 +O(ǫ

5
2 ). (3.36)

Substituting these cross sections into the transport equation along with the rest of

the diffusion scalings and proceeding with the analysis yields Eq. 3.28, the analytic

diffusion equation obtained for the normal cross section.

Numerical results are shown for a KL order of 5, 〈σ〉 = 5 cm−1, vσ = 25 cm−2,

λc = 1 cm, c = 0.5, L = 5 cm, N = 8 and I = 250. As can be seen, the individual

flux realizations show more variation in Fig. 3.13(a) than they did in Fig. 3.11(a)

since vσ = 25 cm−2 as opposed to 2 cm−2. However, as n gets larger, each indi-

vidual realization still approaches the diffusion solution. The relative difference in

each individual realization, shown in Fig. 3.13(b), scales as
√
ǫ, just as it did in

Fig. 3.11(b).
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(a) Scalar Flux for 10 KL Realizations
and Diffusion

(b) Relative L2 Norm of the Difference Between the Nu-
merical and Diffusion Solutions for 25 KL Realizations

Figure 3.13: Diffusion Limit for a Log-Normal Random Process
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The Polynomial Chaos Expansion

The homogeneous form of polynomial chaos (PC) has long been used to represent

Gaussian random processes in terms of Hermite polynomials, where the Hermite poly-

nomials are given in terms of Gaussian random variables. Generalized PC (gPC) is a

more recent development which extends the method to include other families of or-

thogonal polynomials and random variables. Both methods have been used in concert

with the Stochastic Finite Element Method (SFEM), which combines PC expansions

with projections onto the PC basis to yield systems of deterministic equations for the

PC coefficients of the flux which are, in general, coupled. The Stochastic Colloca-

tion Method (SCM) has also been used to calculate the gPC coefficients directly. In

section 4.1, homogeneous chaos and its extension to gPC are discussed. Section 4.2

details the application of SFEM and SCM to the transport equation, both when the

cross section is a random variable and can be represented using a gPC expansion, and

when it is a random process, requiring that a KL expansion be used. A detailed spec-

tral analysis is conducted in section 4.3, including an analysis of the well-posedness

of the SFEM equations, plots of the spectral radii of possible operators for analyzing

the convergence of Richardson iteration and graphs of the eigenvalue spectra of the

operators that yield insight into the convergence of Krylov iterative methods.
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4.1 Polynomial Chaos

4.1.1 Homogeneous Chaos

Homogeneous chaos was first proposed by Wiener [29] and is closely related to the

previous discussion on the KL expansion in Chapter 3 as it expands second-order

random process in terms of Gaussian random variables. As before, the eigenvalues

and eigenfunctions of the covariance function are necessary to construct the KL

expansion, therefore the covariance function must be known. If we want to expand

a quantity with unknown covariance function, a PC expansion in terms of the same

Gaussian random variables, ξk(ω), can be used instead. A second-order random

process, χ(ω), can be represented by the following mean-square convergent expansion

in terms of generalized Hermite polynomials of order n, Hn [33]:

χ(ω) = a0H0 +
∞
∑

i1=1

ai1H1(ξi1)

+

∞
∑

i1=1

i1
∑

i2=1

ai1i2H2(ξi1, ξi2)

+
∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

ai1i2i3H3(ξi1, ξi2, ξi3) + . . . . (4.1)

In order for this expansion to be useful, it is necessary to truncate by limiting both

the number of random variables, K, as well as the maximum polynomial order, P ,
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to yield

χ(ω) = a0H0 +

K
∑

i1=1

ai1H1(ξi1)

+
K
∑

i1=1

i1
∑

i2=1

ai1i2H2(ξi1, ξi2) + . . .

+

K
∑

i1=1

· · ·
iP−1
∑

iP =1

ai1...iPHP (ξi1, . . . , ξiP ) (4.2)

= a0H0 + a1H1(ξ1) + . . .+ aKH1(ξK)

+ a11H2(ξ1, ξ1) + a21H2(ξ2, ξ1) + . . .+ aKKH2(ξK , ξK)

+ . . .+ a1...1HP (ξ1, . . . , ξ1) + . . .+ aK...KHP (ξK , . . . , ξK)

= a0 + a1ξ1 + . . .+ aKξK

+ a11(ξ
2
1 − 1) + a21ξ1ξ2 + . . .+ aKK(ξ2

K − 1) + . . . (4.3)

where the total number of terms in the expansion is

(Pt + 1) =
(K + P )!

K!P !
. (4.4)

Pt is defined in this way so that when there is a single random variable, Pt = P is

the maximum polynomial order. For notational convenience, Eq. 4.3 can be written

as

χ(ω) =

Pt
∑

i=0

âiΨi({ξr}) (4.5)

where âi and Ψi({ξr}) correspond to the ai1...ip and Hp(ξi1, . . . , ξip), respectively. In-

creasing the number of random variables, K, accounts for higher frequency random

fluctuations of the stochastic process itself, while increasing the maximum polyno-

mial order, P , captures strong nonlinear dependence of the solution process on the

stochastic process [40].
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4.1.2 Generalized Polynomial Chaos

Homogeneous chaos is limited to a Hermite-type PC expansion in terms of Gaus-

sian random variables. The method is efficient for Gaussian inputs and certain

types of non-Gaussian (e.g., log-normal) input parameters [33, 40]; however, in gen-

eral, when inputs are non-Gaussian, using another type of random variable may be

more efficient. Generalized polynomial chaos (gPC), developed by Xiu and Karni-

adakis [31, 32], expands the method to so-called “Wiener-Askey chaoses” of orthog-

onal polynomials belonging to the Askey scheme [84], which are listed along with

their corresponding random variable type and support in Table 4.1. As can be seen,

the gPC of the Hermite type is homogeneous chaos.

Wiener-Askey Chaos Random Variables Weight Function Support
{Φ(ζ)} ζ w(ζ)

Hermite Gaussian 1√
2π
e−

ζ2

2 (−∞,∞)

Laguerre gamma ζα−1e−ζ

Γ(α) [0,∞)

Jacobi beta Γ(α+β+2)(1−ζ)α(1+ζ)β

2α+β(b−a)Γ(α+1)Γ(β+1)
[a, b]

Legendre uniform 1
(b−a) [a, b]

Table 4.1: Continuous Wiener-Askey Polynomial Chaoses and their Underlying Ran-
dom Variables and Corresponding Weight Functions

Once again, a second-order random process is expanded as [31, 32]

χ(ω) = c0I0 +

K
∑

i1=1

ci1I1(ζi1)

+

K
∑

i1=1

i1
∑

i2=1

ci1i2I2(ζi1, ζi2) + . . .

+

K
∑

i1=1

· · ·
iP−1
∑

iP =1

ci1...iP IP (ζi1, . . . , ζiP ) (4.6)
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which can be rewritten as

χ(ω) =

Pt
∑

i=0

ĉiΦi({ζr}). (4.7)

The Ip are Askey polynomials of order p, the ζip are their corresponding random

variables and the ĉi and Φi({ζr}) correspond to the ci1...ip and Ip(ζi1, . . . , ζip), respec-

tively. Invoking the orthogonality of the basis functions, the coefficients in Eq. 4.7

are given by

ĉj =
〈χ,Φj(ζ)〉
〈Φ2

j (ζ)〉
(4.8)

where

〈f(ζ), g(ζ)〉 =

∫

f(ζ)g(ζ)w(ζ)dζ. (4.9)

4.1.3 Representation of Arbitrary Random Inputs

The evaluation of the numerator in Eq. 4.7 must be dealt with carefully when χ, χ ∈
(χ0, χ1), and ζ , ζ ∈ (ζ0, ζ1), belong to different probability spaces. This difficulty can

be overcome by mapping both variables onto a third variable, u(ω) ∈ (0, 1). Let the

probability density functions (pdfs) of χ and ζ be f(χ) and g(ζ) with accompanying

cumulative distribution functions (cdfs)

F (χ) =

∫ χ

χ0

f(χ)dχ′

and

G(ζ) =

∫ ζ

ζ0

g(ζ ′)dζ ′.

F (χ) and G(ζ), being cdfs, are defined on the interval (0, 1), thus it is possible to

define u = F (χ) = G(ζ) to be a uniform random variable on interval such that

χ = F−1(u) = h(u) and ζ = G−1(u) = ℓ(u). Now

ĉj =
〈χ,Φj(ζ)〉
〈Φ2

j (ζ)〉
=

1

〈Φ2
j(ζ)〉

∫ 1

0

h(u)Φj(ℓ(u))du. (4.10)
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4.2 Numerical Implementation: Computation of

the Polynomial Chaos Coefficients

4.2.1 The Stochastic Finite Element Method

If the total cross section, σ(ω), does not vary spatially, a single random variable is

sufficient to characterize it. The application of SFEM begins with the expansion of

ψ(x, µ;ω) and σ(ω) in gPC expansions:

ψ(x, µ;ω) =

P
∑

i=0

ψi(x, µ)Φi(ζ(ω)) (4.11)

σ(ω) =

Pσ
∑

j=0

σjΦi(ζ(ω)). (4.12)

The coefficients of the cross section are known since its distribution is known, how-

ever, the coefficients ψi(x, µ) must be determined in the solution process—they are

the problem unknowns. Alternately, if the cross section can be written as a function

of the random variable, σ(ω) = f(ζ(ω)), this expression can be substituted into the

transport equation in place of its gPC expansion.

The stochastic transport equation is formed by substituting ψ(x, µ;ω) and σ(ω)

from Eqs. 4.11 and 4.12 into the deterministic transport equation (Eq. 2.1) to yield

µ

P
∑

i=0

∂ψi(x, µ)

∂x
Φi(ζ(ω)) +

P
∑

i=0

Pσ
∑

j=0

ψi(x, µ)σjΦi(ζ(ω))Φj(ζ(ω)) =

c

2

P
∑

i=0

Pσ
∑

j=0

φi(x)σjΦi(ζ(ω))Φj(ζ(ω)) +Q(x, µ). (4.13)
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If f(ζ(ω)) is used in place of a gPC, the transport equation becomes

µ

P
∑

i=0

∂ψi(x, µ)

∂x
Φi(ζ(ω)) +

P
∑

i=0

ψi(x, µ)f(ζ(ω))Φi(ζ(ω)) =

c

2

P
∑

i=0

φi(x)f(ζ(ω))Φi(ζ(ω)) +Q(x, µ). (4.14)

Since the Φi are orthogonal, taking Galerkin projections onto the polynomial basis

yields a deterministic equation for each ψℓ, ℓ = 0, 1, . . . , P :

µ
∂ψℓ

∂x
〈Φ2

ℓ〉 +

P
∑

i=0

Pσ
∑

j=0

ψiσj〈ΦiΦjΦℓ〉 =
c

2

P
∑

i=0

Pσ
∑

j=0

φiσj〈ΦiΦjΦℓ〉 +Qℓ (4.15)

or

µ
∂ψℓ

∂x
〈Φ2

ℓ〉 +

P
∑

i=0

ψi〈fΦiΦℓ〉 =
c

2

P
∑

i=0

φi〈fΦiΦℓ〉 +Qℓ (4.16)

where Qℓ = 〈ΦℓQ〉. Dividing through by 〈Φ2
ℓ〉 yields

µ
∂ψℓ

∂x
+

P
∑

i=0

bℓiψi =
c

2

P
∑

i=0

bℓiφi + qℓ, ℓ = 0, 1, . . . , P (4.17)

where bℓi =
∑Pσ

j=0 σj
〈ΦiΦjΦℓ〉

〈Φ2
ℓ
〉 or bℓi = 〈fΦiΦℓ〉

〈Φ2
ℓ
〉 and qℓ = Qℓ

〈Φ2
ℓ
〉 .

If, instead, the cross section varies spatially and is therefore a random process, it

can be represented using a truncated KL expansion as in Chapter 3

σ(x, ω) = 〈σ〉 +

K
∑

k=1

√

λkϕk(x)ξk(ω). (4.18)

There are now K random variables to contend with, therefore the PC expansion of

the flux takes the form

ψ(x, µ;ω) =
Pt
∑

i=0

ψi(x, µ)Φi({ζr}) (4.19)

where there are K random variables, P is the maximum polynomial order and there

are (Pt + 1) = (K+P )!
K!P !

terms in the PC expansion of ψ. The transport equation then
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takes the form

µ
Pt
∑

i=0

∂ψi(x, µ)

∂x
Φi({ζk})

+

[

〈σ〉 +
K
∑

k=1

√

λkϕk(x)ξk(ω)

]

Pt
∑

i=0

ψi(x, µ)Φi({ζr}) =

c

2

[

〈σ〉 +

K
∑

k=1

√

λkϕk(x)ξk(ω)

]

Pt
∑

i=0

φi(x)Φi({ζr}) +Q(x, µ). (4.20)

Projecting onto the polynomial basis once again and dividing through by 〈Φ2
ℓ〉 yields

a set of (Pt + 1) fully coupled deterministic equations for ψℓ(x, µ):

µ
∂ψℓ

∂x
Φi({ζk}) + 〈σ〉ψℓ +

K
∑

k=1

Pt
∑

i=0

√

λkϕk(x)
〈ξkΦiΦℓ〉
〈Φ2

ℓ〉
ψi =

c

2
〈σ〉φℓ +

c

2

K
∑

k=1

Pt
∑

i=0

√

λkϕk(x)
〈ξkΦiΦℓ〉
〈Φ2

ℓ〉
φi +Qℓ, ℓ = 0, 1, . . . , Pt. (4.21)

Eq. 4.21 can be written in the same way as Eq. 4.17 where

bℓi(x) = 〈σ〉δℓi +
K
∑

k=1

√

λkϕk(x)
〈ξkΦiΦℓ〉
〈Φ2

ℓ〉
.

As can be seen, regardless of the type of expansion used to represented the cross

section, the stochastic transport problem has been reduced to a system of (Pt + 1)

fully-coupled deterministic equations for ψℓ(x, µ), which must be solved iteratively.

The coupled equations in Eqs. 4.17 are reminiscent of multigroup transport prob-

lems with energy upscatter, for which there are several block iterative schemes avail-

able: Exact Block Gauss-Seidel (BGS), Inexact Block Gauss-Seidel (IBGS), Inexact

Block Jacobi (BJ) and Inexact Block Jacobi (IBJ). In this case, each block corre-

sponds to a particular PC coefficient of the flux, a structure which emerges when

linear discontinuous finite element and discrete ordinates discretizations are applied

to the spatial and angular variables, respectively. In total, then, there are 2IN(Pt+1)
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equations and unknowns, where I is the number of spatial cells and N is the number

of discrete ordinates. The SFEM equations are rewritten in operator notation

L~ψ = MSD~ψ + ~Q (4.22)

where

~ψ = [~ψ0
~ψ1 · · · ~ψPt

]T and ~φ = [~φ0
~φ1 · · · ~φPt

]T .

L is the streaming and removal operator, which represents the left-hand side of

Eq. 4.17; M maps the scalar flux coefficient vector, ~φ, onto the angular flux coefficient

vector, ~ψ; S is the scattering operator, which represents the summation on the right-

hand side of Eq. 4.17; D maps ~ψ onto ~φ (i.e., ~φ = Dψ̃); and ~Q is a vector of the

volume source moments. Since L and S perform summations over the PC moments

of ψ and φ, respectively, each block in these matrices contain a smaller sub-matrix

of dimension 2IN × 2IN and 2I × 2I, respectively. M and D perform mappings on

a single PC moment, therefore their block structure is diagonal and the blocks are

of dimension 2IN × 2I and 2I × 2IN , respectively.

By splitting L and S up into their block lower triangular (LL and SL), block

diagonal (LD and SD) and block upper triangular (LU and SU) parts, it is possible

to write the block iterative schemes in the general form

~ψ(z+1) = T~ψ(z) + ~q (4.23)

where

~q = U ~Q

for iteration-unique U and T and z is the iteration index. For each scheme, U

and T are listed in Table 4.2. The inexact schemes are so-named because the PC

coefficients of the scalar flux on the right-hand side of Eq. 4.17 are not updated until

the end of each outer iteration. In the exact schemes, the scalar flux is kept current
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Method T U

BGS U [−LU + MSUD]
ˆ

I − (LL + LD)−1
M(SL + SD)D

˜−1
(LL + LD)−1

IBGS U [−LU + MSD] (LL + LD)−1

BJ U [−(LL + LU) + M(SL + SU)D] (I − LD
−1

MSDD)−1LD
−1

IBJ U [−(LL + LU) + MSD] LD
−1

Table 4.2: T and U Matrices for Various Iterative Methods

at each outer iteration by conducting a series of inner source iterations for each PC

coefficient. This inner iteration takes the form

Lℓ
~ψ

(y+1)
ℓ = Mℓ(Ss,ℓ + Sf ,ℓ)Dℓ

~ψ(y) + ~Qℓ, ℓ = 0, 1, . . . , Pt (4.24)

is identical to Eq. 2.9 and is conducted independently for each PC coefficient. Mℓ

and Dℓ are also identical to ℓth diagonal block of M and D, respectively.

Given the potentially large number of coupled equations, computational effort

should be reduced considerably by using a more powerful Krylov iterative method,

which can be preconditioned using one of the iterative schemes mentioned above.

This approach has been shown to be efficient for solving the two coupled Levermore-

Pomraning equations, particularly in the atomic mix-diffusion limit [85]. For solution

using a Krylov iterative method, each of the iterations listed above can then be

rewritten in the form A~x = ~b as

(I− T)~ψ = ~q. (4.25)
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4.2.2 The Stochastic Collocation Method

An alternative approach to calculating the PC coefficients is to use quadrature to

evaluate the inner product in Eq. 4.8 directly

ĉj = 〈χ,Φj({ζr})〉 =

∫

ζ1

dζ1 · · ·
∫

ζK

dζK · χ(ζ1, . . . , ζK)Φj(ζ1, . . . , ζK)w(ζ1, . . . , ζK)

≈
M1
∑

m1=1

wm1 · · ·
MK
∑

mK=1

wmK
χ(ζ1,m1 , . . . , ζK,mK

)Φj(ζ1,m1 , . . . , ζK,mK
),

(4.26)

a procedure that has been termed the Stochastic Collocation Method (SCM). When

w({ζr}) is the weight function for a set of classical orthogonal polynomials, as is the

case with the gPC, a suitable Gaussian quadrature can be used.

4.3 Spectral Analysis of the SFEM Equations

4.3.1 Well-Posedness of the SFEM Equations

Since the flux, and possibly the cross section, have been replaced by an approximate

expansion, the well-posedness of the systems of equations given in Eq. 4.17 must be

examined. A similar analysis was given in [32] with more detailed proofs.

We begin by rewriting Eq. 4.17, where the source term has been omitted without

loss of generality, in matrix form

µ
∂ ~ψ

∂x
+BP+1

~ψ =
c

2
BP+1

~φ (4.27)

where ~ψ = [ψ0, ψ1, . . . , ψP ]T , ~φ = [φ0, φ1, . . . , φP ]T andBP+1 = [bℓi], ℓ, i = 0, 1, . . . , P ,

and assume that the PC expansion of the cross section is a linear function of

the random variable—i.e., the cross section can be represented exactly by σ =
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σ0Φ0(ζ) + σ1Φ1(ζ). Then it can be shown that BP+1 has (P + 1) real and dis-

tinct eigenvalues and eigenvectors [32]. Therefore, BP+1 can be diagonalized to form

the matrix ΛP+1 = S−1BP+1S whose diagonal entries are the eigenvalues of BP+1,

λi. The columns of the matrix S are then the eigenvectors of BP+1. Eq. 4.27 can

then be written as

µ
∂~U

∂x
+ ΛP+1

~U =
c

2
ΛP+1

~V (4.28)

where ~U = S−1 ~ψ and ~V = S−1~φ. Since ΛP+1 is diagonal, Eq. 4.28 no longer repre-

sents a coupled system of equations, but a set of (P + 1) independent equations:

µ
∂Ui

∂x
+ λiUi =

c

2
λiVi, i = 0, . . . , P. (4.29)

Given that cross sections are only physically meaningful if they are non-negative,

we conclude that the problem is well-posed if the eigenvalues of BP+1 are all non-

negative—i.e., λi ≥ 0 ∀ i.

Distribution Variance Parameters Support

Normal 1.0 (−∞,∞)

Log-Normal 1.0 [0,∞)

Log-Normal 25.0 [0,∞)

Gamma 1.0 α = 25, β = 0.2 [0,∞)

Gamma 5.0 α = 5, β = 1 [0,∞)

Beta 1.0 α = 11, β = 11 [0, 10]

Beta 5.0 α = 5, β = 2 [0, 15]

Uniform 1.0 [5 −
√

3, 5 +
√

3]

Uniform 5.0 [5 −
√

15, 5 +
√

15]

Table 4.3: Test Case Parameters

A series test cases, which are used throughout this thesis, were selected to rep-

resent a variety of different distributions all with mean 〈σ〉 = 5.0 cm−1. These

distributions are shown in Fig. 4.1 and their particulars are delineated in Table 4.3.

For the gamma, beta and uniform distributions, the various parameters and support

were selected in such a way as to achieve the desired shape, mean and variance.
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P(
σ)

Normal (vσ = 1.0)

Log-Normal (vσ = 1.0)

Log-Normal (vσ = 25.0)

Gamma (α = 25, β = 0.2)
Gamma (α = 5,   β = 1)
Beta (α = β = 11)
Beta (α = 5, β = 2)
Uniform (vσ = 1.0)

Uniform (vσ = 5.0)

Figure 4.1: Plot of Test Case Total Cross Section Distributions for SFEM

The minimum values of λ are plotted in Fig. 4.2. As can be seen, the larger the PC

order, the smaller the minimum eigenvalue. Also, for a particular distribution, larger

variances lead to smaller minimum eigenvalues. This is particularly noticeable for

the normal distribution where for vσ = 25, the eigenvalue falls sharply to zero for

P = 1 and is negative past that point. For vσ = 1, the minimum eigenvalue is only

positive up to P = 9, and for vσ = 0.25, the eigenvalue does not fall below zero until

P = 31. Thus, for the normal distribution, it is reasonable to conclude that there is

always some PC order beyond which the SFEM solution will become ill-posed. This

is not a failure of the method itself, but rather the result of representing strictly

non-negative cross sections with a distribution that allows for negative numbers. For

the other three distributions, the plots level out at some positive value and, since
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..

Figure 4.2: Plot of the Minimum Eigenvalues of Each Distribution

their support is strictly positive in the cases selected, it can be assumed that they do

not ever fall below zero and therefore always form a well-posed systems of equations.

It was also observed that for an optimal gPC expansion and when M = (P + 1),

where M is the number of SCM quadrature points, the number of negative eigen-

values of BP+1 corresponds to the number of negative abscissas produced by the

corresponding Gauss quadrature set used for SCM. Furthermore, λi = σi, where λi

is the ith eigenvalue of BP+1 and σi is the ith SCM quadrature abscissa. This can be

seen in Table 4.4, which lists σi and λi for various SCM quadrature and PC orders

for two different quadrature sets their optimal gPC chaoses: The normal distribu-

tion with 〈σ〉 = 5.0 cm and vσ = 1.0 cm−2 represented using Hermite chaos and

the beta distribution with α = β = 11 defined on the interval [−5, 15] represented
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M σi, i = 1 . . . M
Distribution

P λi, i = 1 . . . P + 1

2 {6, 4}
1 {6, 4}
4 {7.33441421833900, 5.74196378430270, 4.25803621569730, 2.66558578166100}
3 {7.33441421833898, 5.74196378430273, 4.25803621569727, 2.66558578166102}

{9.14454718612590, 7.80248586128750, 6.63651904243510, 5.53907981135140,
8

4.46092018864860, 3.36348095756490, 2.19751413871250, 0.85545281387411}
Normal {9.14454718612588, 7.80248586128754, 6.63651904243510, 5.53907981135137,

7
4.46092018864862, 3.36348095756489, 2.19751413871246, 0.85545281387411}

{11.63087819839300, 10.47222570594900, 9.49295530252000, 8.60087362417150,

7.76024504763070, 6.95198034571630, 6.16382910055500, 5.38676060450060,
16

4.61323939549940, 3.83617089944500, 3.04801965428370, 2.23975495236930,

1.39912637582850, 0.507044697479990, −0.472225705949340, −1.63087819839310}
{11.63087819839313, 10.47222570594933, 9.49295530252000, 8.60087362417155,

7.76024504763071, 6.95198034571632, 6.16382910055496, 5.38676060450055,
15

4.61323939549943, 3.83617089944504, 3.04801965428367, 2.23975495236930,

1.39912637582845, 0.507044697479990, −0.47222570594934, −1.63087819839312}
2 {7, 3}
1 {7, 3}
4 {9.31664814502680, 6.43394698801960, 3.56605301198040, 0.68335185497321}
3 {9.31664814502678, 6.43394698801964, 3.56605301198036, 0.68335185497321}

{11.59435131344900, 9.77702630514080, 7.90204392629330, 5.97384144517530,
8

4.02615855482470, 2.09795607370670, 0.22297369485925, −1.59435131344940}
Beta {11.59435131344938, 9.77702630514074, 7.90204392629336, 5.97384144517534,

α = β = 11
7

4.02615855482466, 2.09795607370666, 0.22297369485925, −1.59435131344939}
[-5,15] {13.34601040970200, 12.42262779386900, 11.43457261997400, 10.37475412641600,

9.25081306863260, 8.07471734486130, 6.86037616324450, 5.62273311241410,
16

4.37726688758590, 3.13962383675550, 1.92528265513870, 0.74918693136744,

−0.37475412641636, −1.43457261997410, −2.42262779386870, −3.34601040970160}
{13.34601040970155, 12.42262779386867, 11.43457261997414, 10.37475412641636,

9.25081306863256, 8.07471734486133, 6.86037616324449, 5.62273311241412,
15

4.37726688758588, 3.13962383675552, 1.92528265513867, 0.74918693136744,

−0.37475412641636, −1.43457261997414, −2.42262779386866, −3.34601040970156}

Table 4.4: Quadrature Abscissas for SCM and Eigenvalues of BP+1 for SFEM

using Jacobi chaos. As can be seen, both distributions have non-zero probabilities

of negative cross sections, thus for large enough quadrature/PC order, at least one

of the quadrature abscissas and eigenvalues of BP+1 become negative.

Since λi = σi, it follows that Ui and Vi in Eq. 4.29 are in fact the angular and

scalar fluxes computed when σi is used as the cross section in the deterministic

transport equation. Furthermore, since ~ψ = S~U and the elements of ψ are the PC

coefficients of the angular flux,

ψp =
〈ψΦp〉
〈Φ2

p〉
,
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multiplying the pth row of S, S(p, :), by ~U must perform the quadrature summation

ψp = S(p, :)~U =
1

〈Φ2
p〉

M
∑

i=1

wiΦp(ζi)Ui.

While this is hardly a rigorous proof, it would seem to indicate that SFEM and SCM

are in fact equivalent when M = (P + 1). This result would also seem to confirm that

the non-zero probability of negative cross sections is responsible for the ill-posedness

of SFEM for the Gaussian distribution (and other distributions without positive

support). While it is possible to truncate the distribution when SCM is used by

ignoring terms, there is no clear way to do this in the SFEM equations, therefore

they become unstable.

4.3.2 Spectral Radii of the Operators

The convergence of the iterative schemes presented above are analyzed using Fourier

analysis. This is accomplished by taking the spectral Fourier transform of Eq. 4.17

with the discrete ordinates approximation in angle

µnikψ̄n,ℓ +
P
∑

p=0

bℓpψ̄n,p =
c

2

P
∑

p=0

bℓpφ̄p + q̄ℓ, ℓ = 0, 1, . . . , P, (4.30)

where the Fourier transforms of a function, f , and its derivative,
∂fn,ℓ(x)

∂x
, are defined

to be

f̄n,ℓ(k) =

∫ ∞

−∞
e−ikxfn,ℓ(x)dx

and

∂fn,ℓ

∂x
(k) =

∫ ∞

−∞
e−ikxfn,ℓ(x)dx = ikf̄n,ℓ(k),

respectively. The spectral radius of a particular iterative scheme is then given by

applying iteration indices and recasting Eq. 4.30 in the form

~Ψ(m+1) = G(k)~Ψ(m) + ~q (4.31)
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where (m) is the iteration index, ~Ψ is a vector of values ψ̄n,ℓ, and G(k) is an iteration-

specific coefficient matrix. The spectral radius, ρ, of G(k) offers valuable insight into

the convergence of the iterative scheme; convergence is guaranteed if

ρ = max
−∞<k<∞

‖G(k)‖ < 1.

The spectral radii were computed for several different distributions represented by

the optimal polynomial chaoses, with results shown below for various PC orders and

scattering ratios, c.

In the previous analysis in Section 4.3.1, it was predicted that for the normal

distribution with 〈σ〉 = 5.0 cm−1 and vσ = 1.0 cm−2, the solution is only physical

up to a PC order of 9. This is once again clearly demonstrated by the spectral

radii of the Inexact Block Gauss-Seidel and Inexact Block Jacobi methods shown in

Fig. 4.3, which are greater than unity for P > 9. Also shown are the spectral radii

for vσ = 0.25 and vσ = 25.0 cm−2. For the smaller variance case, it is expected that

the spectral radius will exceed unity for P > 30, thus in this plot, where the P ≤ 15,

all spectral radii are less than unity. For the larger variance, the spectral radius is

greater than one for all PC orders greater than zero, which is the deterministic case,

also as predicted. Fig. 4.4 shows spectral radii for the log-normal distribution for

vσ = 1.0 and vσ = 25.0 cm−2. The IBJ iteration is non-convergent when P > 1 for

the larger variance, and the spectral radius rapidly approaches unity for the smaller

variance when P > 6. The spectral radius of the IBGS iteration is convergent in all

cases, however.

Figs. 4.5, 4.6 and 4.7(a) show spectral radii for the gamma, beta and uniform

distributions for vσ = 1 cm−2 and vσ = 5 cm−2, c = 0.5, and the optimal Laguerre,

Jacobi and Legendre Chaos expansions, respectively. As predicted, for these three

distributions there are no issues with convergence when the optimal gPC expansion

is used. In general, it can be stated that smaller scattering ratios and cross section

variances result in more rapid convergence of the SFEM solution. Also, IBGS should
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always converge more rapidly than IBJ for serial computation. Fig. 4.7(b) shows the

spectral radius of the SFEM equations when non-optimal Hermite chaos is used to

model a uniform cross section. As can be seen, the spectral radii do not converge

monotonically with PC order as they do when Legendre chaos is used, and the

spectral radius exceeds unity for P > 8 for vσ = 1 and for P = 6 and P > 8 for

vσ = 5. This is due to the same phenomenon encountered when Hermite chaos was

used to represent the Gaussian distribution—it allows for negative cross sections that

are unphysical and therefore destabilize the numerical system.

..
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Figure 4.3: Spectral Radii vs. PC order: Hermite Chaos expansion of the Normal
Distribution (〈σ〉 = 5.0 cm−1)
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Figure 4.4: Spectral Radii vs. PC order: Hermite Chaos expansion of the Log-Normal
Distribution (〈σ〉 = 5.0 cm−1, c = 0.5)
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Figure 4.5: Spectral Radii vs. PC order: Laguerre Chaos expansion of the Gamma
Distribution (〈σ〉 = 5.0 cm−1, c = 0.5)
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Figure 4.6: Spectral Radii vs. PC order: Jacobi Chaos expansion of the Beta Dis-
tribution (〈σ〉 = 5.0 cm−1, c = 0.5)
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(a) Legendre Chaos Expansion
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(b) Hermite Chaos Expansion

Figure 4.7: Spectral Radii vs. PC order: Uniform Distribution (〈σ〉 = 5.0 cm−1,
c = 0.5)
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4.3.3 Eigenvalue Spectra of the Operators

The spectral radius of the operator A in the matrix equation A~x = ~b can say much

about the behavior of Krylov iterative method employed to solve it. The matrix

equation takes the form

(I− T)~ψ = ~q, (4.32)

for which the T matrices are given in Table 4.2. Therefore in this section, the eigen-

value spectra of the operators (I−T) are explored for the IBGS and IBJ iterations.

Fig. 4.8 shows the eigenvalue spectra of the IBGS and IBJ for the Hermite chaos

expansion of the normal cross section, with the imaginary part of the eigenvalue

plotted vs. the real part, for 〈σ〉 = 5.0 cm−1 and vσ = 1.0 cm−2 for c = 0.5 and

c = 0.99. As can be seen, the spectra are more tightly clustered around one for

smaller PC orders and become more spread out as the order increases. The clusters

also spread out as the material becomes more diffusive. This indicates that a Krylov

iterative method will converge more rapidly for smaller PC orders and less diffusive

materials. When P = 15, for which physically meaningful solutions do not exist

and for which the spectral radii for the simple operators are larger than unity, the

eigenvalue cluster is not only large, but also surrounds the origin in all cases. This

indicates that the operator may be singular, or extremely close to singular, in which

case GMRES is not likely to converge. Because the problem has been shown to be

ill-posed, this result is not surprising.

In Figs. 4.9, 4.10, 4.11 and 4.12(a), eigenvalue spectra are shown for c = 0.5 for

optimal gPC expansions of the log-normal, gamma, beta and uniform cross sections.

Two different variances are shown in each case, and in general it can be concluded

that larger PC orders and variances lead to eigenvalue clusters with larger radii and

terms that sit extremely close to the origin. Although the plots are not shown, for

larger scattering ratios the spectra have larger radii and are more spread out as was
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observed in Fig. 4.8. Also shown in Fig. 4.12(b) is the eigenvalue spectrum for the

uniform cross section represented using Hermite chaos. For the IBGS iteration, the

spectra are similar in every case except P = 7 and vσ = 5 for which the Hermite

chaos cluster is larger. For the IBJ iteration, the spectra are similar in all cases. The

P = 15 spectrum is not shown for Hermite chaos because the cluster is very large

and numerical system clearly unstable for the same reasons that the spectral radius

exceeds unity.
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Figure 4.12: Eigenvalue spectrum for various PC orders: Uniform Distribution (〈σ〉 =
5.0 cm−1, c = 0.5)
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Numerical Results

An extensive numerical study was conducted in order to test the convergence of

the PC expansion and to compare the accuracy and computational efficiency of the

SCM and SFEM solution methods. In Section 5.1, the convergence of the optimal

gPC expansion is explored for each of the test cases delineated in Table 4.3. Results

computed using both the SCM and the SFEM are shown and compared. Non-optimal

Hermite chaos is also used to represent a uniform random variable in order to compare

convergence with Legendre chaos. In Section 5.2, higher-order PC coefficients of the

scalar flux are shown for several of the test cases. Section 5.3 shows similar results for

the KL expansion, comparing the SCM with the SFEM. And finally, in Section 5.4,

the computational efficiency of the SCM and SFEM are compared for these test

cases.
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5.1 Accuracy and Convergence of the PC Expan-

sion for Various Random Variables

5.1.1 Optimal gPC Expansions

Figs. 5.1 to 5.10 show flux profiles and flux pdfs at various material depths for cross

sections that are random variables of the normal, log-normal, gamma, beta and

uniform varieties. In all cases, the mean cross section is 〈σ〉 = 5 cm−1 and the

cross sections are represented exactly using their corresponding random variables.

In the flux profile graphs, M indicates the number of SCM quadrature point used, P

indicates the order of PC expansion used in the SFEM and the number in parentheses

indicates the number of Monte Carlo realizations required to achieve a relative sample

standard deviation of 1% for the flux. In the flux pdf graphs, PC indicates the order

of the PC expansion used to reconstruct the pdf. The pdf of the flux is defined to be

P (φ) =

∫ ζmax

ζmin

dζ δ[φ−
∑

apΦp(ζ)]P (ζ)

=
1

2π

∫ ∞

−∞
dk e−ikφ

∫ ζmax

ζmin

dζ eik
P

apΦp(ζ)P (ζ) (5.1)

where ζ ∈ [ζmin ζmax] is the random variable with pdf P (ζ). However, the integral

in Eq. 5.1 generally cannot be computed analytically, therefore the pdfs shown be-

low were generated by sampling the random variable 106 times, computing the flux

from its PC expansionusing this value, and tabulating the values to generate the

histograms shown.

In Fig. 5.1, the flux as given by Gauss-Hermite quadrature and Hermite chaos is

shown for the normal distribution for a variance of 1.0 cm−2 and scattering ratios of

c = 0.5 and c = 0.99. There are several items of note:

1. As can been seen in Fig. 5.1(a) and as predicted by the analysis, it is not

72



www.manaraa.com

Chapter 5. The Polynomial Chaos Expansion: Numerical Results

possible to attain SFEM solutions for P = 15 and P = 31, although P = 7

is not sufficient to characterize the standard deviation. Once again, this is

not a failure of Hermite chaos itself but rather a by-product of representing a

strictly non-negative quantity as a normal random variable, thereby admitting

negative values. Gauss-Hermite quadrature also struggles with negativities,

producing 7 and 2 negative abscissas for M = 32 and M = 16, respectively, as

indicated by the usable number of SCM quadrature points given in parentheses.

These negative abscissas are discarded, so the distribution being sampled from

is in fact not a true Gaussian, but a Gaussian truncated at zero so that it is

only semi-infinite in scope. The quadrature weights are not renormalized, as

perhaps they should be, but the sum of the weights in the quadrature set is

0.99999986890290 for M = 16 and 0.99999990884086 for M = 32 when 2 and 7

quadrature points are discarded, respectively. These sums are so close to unity,

thus their exclusion does not profoundly impact the solution.

2. As c approaches unity—i.e., as the material becomes more diffusive—fewer PC

terms are required to obtain an accurate solution. As can be seen in Fig. 5.2,

the flux pdf is essentially normal near the incident edge in both cases, but

becomes increasingly skewed as the beam penetrates the slab for c = 0.5, while

it becomes only slightly skewed for c = 0.99. It would therefore be expected

that a larger PC order would be required to converge c = 0.5 than c = 0.99

since the flux is clearly a higher-order function of the normal random variable

used to represent it.

3. As the material becomes more diffusive, the deterministic solution computed

for the mean cross section is a more accurate approximation of the true mean

flux, although the deterministic solution always underestimates the mean value.

This can once again be explained by turning to the pdf plot (Fig. 5.2), which

shows that the flux profile is far narrower in the diffusive material, indicat-
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ing that the solution is not as profoundly affected by the stochasticity of the

material.

4. It requires higher SCM quadrature and PC orders to accurately represent the

second moment of the flux, hence the standard deviation, than the mean. This

indicates that the second moment of the flux is a higher-order function of the

random variable than the first moment. It is expected that obtaining accurate

higher-order moments of the flux would demand even higher SCM quadrature

and PC orders.

5. The SCM with a SCM quadrature order of M is equivalent to the SFEM with a

flux PC expansion of order P = (M−1). The SCM computes the ith moment of

the flux using a quadrature approximation of the integral 〈φΦi〉 (see Eq. 4.26).

Representing the flux using a PC order of P assumes that the flux can be well-

represented using a polynomial of order P in terms of the random variable,

thus the integrand can be assumed to be a polynomial of degree no greater

than 2P. A Gauss quadrature order of M will exactly integrate a polynomial of

order (2M− 1) weighted by the appropriate weight function. For P = (M− 1),

the maximum polynomial order of the integrand is 2P = (2M − 2), thus the

integral computed by quadrature is exact for each term in the PC expansion.

If higher-order terms are computed using a Gauss-Hermite quadrature of order

M, they will be inaccurate since the polynomial order exceeds the accuracy

of the SCM quadrature order. It is interesting to note that while the lower

order PC coefficients could be computed using lower order SCM quadratures,

this approach is ultimately more time consuming because the Gauss-Hermite

quadrature is not nested. Each SCM quadrature order therefore contains an

entirely unique set of abscissas and corresponding transport solutions.

As can been seen in Fig. 5.1(a) and as predicted by the analysis, it is not possible

to attain SFEM solutions for P = 15 and P = 31, although P = 7 is not sufficient
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to characterize the standard deviation. Once again, this is not a failure of Hermite

chaos itself but rather a by-product of representing a strictly non-negative quantity

as a normal random variable, thereby admitting negative values. Gauss-Hermite

quadrature also struggles with negativities, producing 7 and 2 negative abscissas

for M = 32 and M = 16, respectively, as indicated by the usable number of SCM

quadrature points given in parentheses. These negative abscissas are discarded, so

the distribution being sampled from is in fact not a true Gaussian, but a Gaussian

truncated at zero so that it is only semi-infinite in scope. The quadrature weights

are not renormalized, as perhaps they should be, but the sum of the weights in the

quadrature set is 0.99999986890290 for M = 16 and 0.99999990884086 for M = 32

when 2 and 7 quadrature points are discarded, respectively. These sums are so close

to unity, leading us to conclude that their exclusion did not profoundly impact the

solution.

The effect of diffusivity on the accuracy of the deterministic solution and the

required number of quadrature points or PC terms holds regardless of the cross-

section distribution, therefore for the remaining distributions, flux profiles are given

for two different variances and c = 0.5, for which the stochasticity of the material

has a large effect on the solution and the deterministic solution quite inaccurate.

Fig. 5.3 shows flux profiles for a cross section that is a log-normal random variable,

also represented using Hermite chaos and the SCM solution computed using Gauss-

Hermite quadrature. As would be expected, the stochastic solution varies from the

deterministic solution more drastically for larger variances and, accordingly, larger

SCM quadrature and PC orders are required to converge the flux for larger variances.

In this case, for instance, the mean flux is converged for M = 4 and P = 3 when

vσ = 1.0, while when vσ = 25.0, the mean flux is converged for M = 8 and P = 7

terms are required. Also, the relative standard deviation in the flux is, in general,

larger for larger standard deviations in the cross section. Finally, in comparing

Figs. 5.1(a) and 5.3(a) for which the standard deviations and scattering ratios are the
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same, it can be seen that for a normally distributed cross section, the mean flux varies

more drastically from the deterministic solution than for a log-normally distributed

cross section. Accordingly, the relative standard deviation in the flux is also larger.

This effect is attributable to the fact that the normal distribution is infinite in scope

while the log-normal distribution is only semi-infinite. This particular distribution

also stands out from the others in that the chaos and quadrature used were designed

for the normal distribution. Since the log-normal distribution can be represented

exactly as a function of the normal distribution, no approximations are required,

however it is no longer true that retaining the same number of terms in the SCM

quadrature and PC approximations yields equivalent solutions.

In Figs. 5.5, 5.7 and 5.9, flux profiles are shown for variances of 1.0 and 5.0 cm−2

for the gamma, beta and uniform distributions. Many of the observations made above

apply in each instance. In general, a Gauss quadrature order of M is equivalent to a

PC order of (M−1) when both methods are based on the orthogonal polynomial set

corresponding to the shape of the cross section distribution—e.g., Gauss-Legendre

quadrature and Legendre Chaos. Also, for larger variances, the flux converges more

slowly as a function of SCM quadrature/PC order and varies more drastically from

the deterministic solution.

Finally, in Fig. 5.11, the pdfs of the fluxes for various cross section distributions

are shown for two different depths and variances. As can be seen, the shape of

the cross section distribution has a profound effect upon the distribution of the

solution—i.e., the flux. This is even true when vσ = 1.0 for which the normal,

log-normal, gamma and beta cross section distributions appear to be quite similar

(see Fig. 4.1). This demonstrates the importance of faithfully representing the cross

section distribution pdf, not just its mean and variance.
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Normal Distribution: Hermite Chaos
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Figure 5.1: Scalar Flux: Hermite Chaos expansion of the Normal Distribution and
Gauss-Hermite Quadrature (〈σ〉 = 5.0 cm−1, vσ = 1.0 cm−2)
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..

(a) c = 0.5

..

(b) c = 0.99

Figure 5.2: PDF of the Scalar Flux: Hermite Chaos expansion of the Normal Distri-
bution (〈σ〉 = 5.0 cm−1, vσ = 1.0 cm−2)
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Log-Normal Distribution: Hermite Chaos
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Figure 5.3: Scalar Flux: Hermite Chaos expansion of the Log-Normal Distribution
and Gauss-Hermite Quadrature (〈σ〉 = 5.0 cm−1, c = 0.5)
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(a) vσ = 1.0 cm−2

..

(b) vσ = 25.0 cm−2

Figure 5.4: PDF of the Scalar Flux: Hermite Chaos expansion of the Log-Normal
Distribution (〈σ〉 = 5.0 cm−1, c = 0.5)
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Gamma Distribution: Laguerre Chaos
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Figure 5.5: Scalar Flux: Laguerre Chaos expansion of the Gamma Distribution and
Gauss-Laguerre Quadrature (〈σ〉 = 5.0 cm−1, c = 0.5)
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..

(a) vσ = 1.0 cm−2 (α = 25, β = 0.2)

..

(b) vσ = 5.0 cm−2 (α = 5, β = 1)

Figure 5.6: PDF of the Scalar Flux: Laguerre Chaos expansion of the Gamma
Distribution (〈σ〉 = 5.0 cm−1, c = 0.5)
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Beta Distribution: Jacobi Chaos
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Figure 5.7: Scalar Flux: Jacobi Chaos expansion of the Beta Distribution and Gauss-
Jacobi Quadrature (〈σ〉 = 5.0 cm−1, c = 0.5)
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(a) vσ = 1.0 cm−2 (α = β = 11, σ ∈ (0, 10))

..

(b) vσ = 5.0 cm−2 (α = 5, β = 2, σ ∈ (0, 15))

Figure 5.8: PDF of the Scalar Flux: Jacobi Chaos expansion of the Beta Distribution
(〈σ〉 = 5.0 cm−1, c = 0.5)
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Uniform Distribution: Legendre Chaos
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Figure 5.9: Scalar Flux: Legendre Chaos expansion of the Uniform Distribution and
Gauss-Legendre Quadrature (〈σ〉 = 5.0 cm−1, c = 0.5)
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(a) vσ = 1.0 cm−2 (σ ∈ (3.2679, 6.7321))

..

(b) vσ = 5.0 cm−2 (σ ∈ (1.1270, 8.8730))

Figure 5.10: PDF of the Scalar Flux: Legendre Chaos expansion of the Uniform
Distribution (〈σ〉 = 5.0 cm−1, c = 0.5)
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Figure 5.11: PDF of the Scalar Flux for Various Distributions (〈σ〉 = 5.0 cm−1,
c = 0.5)
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5.1.2 Non-Optimal gPC Expansions

The uniform cross section was also represented using Hermite chaos using the method-

ology presented in Section 4.1.3. Fig. 5.12 shows the pdf of the cross section for

vσ = 1.0 cm−2 and vσ = 5.0 cm−2 as a function of terms preserved in the PC ex-

pansion. As can be seen, the pdf generated using the PC expansion becomes more

accurate as the PC order, Pσ, increases. However, a converged pdf of the cross sec-

tion is not required in order for the SFEM to produce a converged solution, as can

be seen in Fig. 5.13. For both variances, P = Pσ = 7 is sufficient to converge the flux

and standard deviation. This is particularly interesting when vσ = 5.0 since, when

optimal Legendre chaos expansion is used to represent the cross section and the flux,

P = 15 is required to converge the standard deviation. Although the cross section

is not being represented exactly, a PC expansion in terms of the normal random

variable is clearly better able to approximate the flux than a PC expansion in terms

of a uniform random variable. In examining Figs. 5.11(b) and 5.11(d), it can be seen

that the pdf of the flux is essentially uniform close to the incident boundary, but be-

comes a smoother function of φ as the beam penetrates the slab. It is not surprising,

then, that a Hermite chaos expansion is better able to approximate the flux than a

Legendre chaos expansion. It cannot be assumed, as often stated in the literature,

that representing the cross section using an optimal gPC expansion is necessarily the

most efficient option available.
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Figure 5.12: PDF of the Cross Section: Hermite Chaos Expansion of a Uniformly
Distributed Cross Section (〈σ〉 = 5.0 cm−1)
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5.2 PC Coefficients of the Scalar Flux

Figs. 5.14, 5.15 and 5.16 show higher-order PC coefficients of the flux for several of the

test cases. The mean (φ0) is not shown because it is, in general, considerably larger

than the other moments, is always positive and is shown in the previous section.

Fig. 5.14 shows the PC moments of the flux for the normal distribution for two

different scattering ratios. As can be seen, the higher-order moments are not always

positive. Although negative fluxes are unphysical, this does not present a problem

as long as the expansion itself remains positive. As can be seen, the coefficients get

successively smaller, indicating that the series is converging. It is also interesting to

note that while the coefficients are larger in magnitude for c = 0.99, they also fall to

zero more quickly.

Fig. 5.15 shows the PC coefficents of the flux for the gamma distribution for two

different variances. For the larger variance, the moments are larger indicating that

the series is not converging as rapidly. As can be seen, the structure of the coefficients

is quite different from those in the previous graph. In this case, all of the moments

except for φ1 start out negative at the incident boundary and, at some point, become

positive. The magnitude of the minimum value (i.e., the most negative value) is on

the same order as that of the maximum.

And finally, Fig. 5.16 shows the PC coefficents of the flux for the beta distribution

for two different variances. Once again, the structure of the moments is quite different

than those from the other two distributions. However, the moments are still larger

when the variance is larger.
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Figure 5.14: PC Coefficients of the Scalar Flux: Hermite Chaos expansion of the
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Figure 5.15: PC Coefficients of the Scalar Flux: Laguerre Chaos expansion of the
Gamma Distribution (〈σ〉 = 5.0 cm−1, c = 0.5)
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Figure 5.16: PC Coefficients of the Scalar Flux: Jacobi Chaos expansion of the Beta
Distribution (〈σ〉 = 5.0 cm−1, c = 0.5)
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5.3 Accuracy and Convergence of the PC Expan-

sion for Gaussian Random Processes

Figs. 5.17 and 5.18 show fluxes and standard deviations for c = 0.5 and c = 0.9,

respectively, computed using the SCM with quadrature order M and the SFEM for a

maximum polynomial order of P and a KL order of 5. This translates to a PC order

of (Pt + 1) = (P+K)!
P !K!

and a quadrature tensor product with MK abscissas. In all

cases, 〈σ〉 = 5.0 cm−1, vσ = 1.0 cm−2, L = 5 cm, λc = 1 cm, N = 8 and I = 100. As

can be seen, once again the SCM with M = (P + 1) is roughly equivalent to SFEM

for a maximum polynomial order of P. There is some discrepancy between the two

solutions, but it decreases as both solutions converge. Maximum polynomial orders

of 5 and 3 are sufficient to converge the flux for c = 0.5 and c = 0.9, respectively,

while maximum polynomial orders of 7 and 5 are necessary to converge the standard

deviations.
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Figure 5.17: Normal Cross Section: Scalar Flux and its Standard Deviation for
SFEM and SCM (c = 0.5)
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Figure 5.18: Normal Cross Section: Scalar Flux and its Standard Deviation for
SFEM and SCM (c = 0.9)
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5.4 Computational Efficiency of SFEM vs. SCM

5.4.1 Optimal gPC Expansions

Tables 5.1 through 5.4 show iteration counts and run times given as an average over

25 runs for c = 0.5 and c = 0.99 for each distribution. In each cell, the number on

top is the result for SFEM and the number on the bottom is the result for SCM for a

quadrature order of M = (P + 1) and a PC order of P. For both methods, the iteration

counts given are totals. Thus, for the SCM quadrature solution, the count is the total

number of deterministic transport iterations for all quadrature abscissas. For the

SFEM solution, the count is the total number of iterations for the coupled SFEM

equations. Data is given for the IBGS scheme for Richardson, restarted GMRES

with a restart of eight, and BiCGStab iterations. The GMRES restart parameter

was chosen by testing different restarts on several of the test cases. A restart of eight

was chosen because higher restart parameters did not drastically improve the speed

of convergence, and it is desirable to keep the Krylov subspace as small as possible

to conserve computer storage. There are several broad generalizations that can be

made from the data:

• Larger iteration counts, hence larger run times, are required for larger scatter-

ing ratios, as expected in a transport setting when the material becomes more

diffusive. For the SFEM, the iteration count also grows with the variance, and

this effect increases with increasing PC order—i.e., for P = 1, there is only a

difference of a few iterations between vσ = 1.0 and vσ = 5.0, but for P = 15,

the iteration count is considerably larger for vσ = 5.0 than vσ = 1.0.

• As the SCM quadrature order doubles, the number of iterations, hence the run

time, roughly doubles as well. This is due to the fact that for the deterministic

solution, convergence is strongly influenced by the scattering ratio, which is
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the same for the computation at each abscissa. This behavior can be observed

in Figs. 4.8 through 4.12(a). As can be seen, the spectral radius for the IBGS

iteration for a PC order of zero, which is in fact the spectral radius of the single

deterministic equation, is roughly equal to the scattering ratio. Furthermore,

the iteration count per quadrature point varies only slightly with quadrature

order and variance—it is affected only by scattering ratio.

• Generally, as the number of terms in the PC expansion increases, the itera-

tion count remains roughly constant when the variance is unity. However, the

computational effort per iteration increases non-linearly with PC order, thus

the run time more than doubles each time the PC order doubles. For larger

variances and smaller scattering ratios, the iteration count increases more dra-

matically with PC order. This can be seen in the spectral analysis, where the

spectral radius approaches unity more rapidly as a function of PC order when

the variance is larger and exceeds unity for the normal distribution for P > 9.

• BiCGStab always requires the fewest iterations, followed by GMRES(8) and

then Richardson iteration. Since each iterative method requires a different

amount of computational effort, this does not mean that run times will follow

the same trend, although generally they do.

• Although there are always fewer SFEM iterations than SCM iterations, each

SFEM iteration involves inverting a much larger matrix, and is therefore more

computationally intensive. Therefore, without exception, an M-term SCM

quadrature solution always runs in a shorter time than an SFEM solution

for P = (M − 1). Since these solutions are roughly equivalent, as shown in a

previous section, SCM is shown to be the more efficient solution method in

these cases.
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In several cases, convergence was not achieved. For the normal distribution,

when the PC order exceeds 9, the problem is no longer well-posed and the spectral

radius of the matrix for Richardson iteration exceeds unity. The matrices for the

Krylov iterations are also non-singular in that case. Consequently, for these PC or-

ders, Richardson iteration is unstable, with the solution increasing without bound,

restarted GMRES stagnates and BiCGStab breaks down numerically. Also, for the

log-normal distribution, when P = 7, BiCGStab breaks down numerically for un-

known reasons, but Richardson iteration and restarted GMRES converge without

incident, albeit an extraordinarily large number of iterations. The spectral analysis

reveals that the spectral radius is essentially unity and the eigenvalue cluster is quite

large in this case. It is also interesting to note that this is the same case for which

the spectral radius of IBJ is greater than unity for a PC order greater than one (see

Fig. 4.4).

It can be concluded that the SCM is significantly more efficient than the SFEM

when the inputs and unknowns are functions of a univariate random variable. This

is particularly true as the variance grows because, for a given SCM quadrature or-

der, the same number of transport iterations are required regardless of the vari-

ance—source iteration is sensitive only to the scattering ratio. The convergence of

the SFEM, on the other hand, slows considerably with increasing variance because

additional iterations are required. It is also possible to accelerate the individual SCM

computations in problematic diffusive regimes using diffusion or S2 synthetic accel-

erations [86, 87], which would make SCM even more efficient. BiCGStab is faster

than restarted GMRES in general, and significantly faster than GMRES in diffu-

sive regimes, although it does break down in instances where GMRES converges.

In terms of choosing an iterative method, it would therefore seem to be prudent to

always begin with BiCGStab and turn to restarted GMRES should it fail.
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P
distribution M IBGS GMRES(8) BiCGStab

1 28 13 7
2 52 22 14

normal 3 32 16 9
vσ = 1 4 104 44 27

7 60 31 18
8 207 86 51
1 28 13 7
2 52 22 14

log-normal 3 29 15 8
vσ = 1 4 104 44 27

7 29 16 9
8 208 88 51
1 50 24 14
2 52 22 13

log-normal 3 184 112 62
vσ = 25 4 101 39 23

7 4470 704 NC
8 190 69 41
1 28 13 7
2 52 22 14
3 30 15 8

gamma 4 104 44 27
vσ = 1 7 34 17 9

8 208 88 52
15 35 16 9
16 416 173 101
1 32 15 8
2 52 22 12
3 54 25 13
4 104 43 25

gamma 7 112 52 32
vσ = 5 8 208 83 49

15 242 112 62
16 415 158 92
31 466 199 NC
32 827 298 174
1 28 13 7
2 52 22 14
3 31 15 8

beta 4 104 44 27
vσ = 1 7 36 18 10

8 208 88 54
15 38 21 11
16 415 173 103
1 33 16 9
2 52 22 13
3 59 28 17

beta 4 104 44 26
vσ = 5 7 116 64 33

8 206 86 49
15 204 123 74
16 407 165 97
1 28 13 7
2 52 22 14

uniform 3 29 14 7
vσ = 1 4 104 44 27

7 29 14 7
8 208 88 54
1 35 17 9
2 52 22 13
3 52 25 14

uniform 4 104 44 26
vσ = 5 7 62 30 18

8 208 87 52
15 63 31 19
16 416 174 105

Table 5.1: IBGS Iteration Counts: c = 0.5 and Single Random Variable Cross Section
with Optimal gPC (ǫ = 10−9)
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P
distribution M IBGS GMRES(8) BiCGStab

1 0.0104 0.012 0.0104
2 0.0072 0.0092 0.0084

normal 3 0.0284 0.034 0.0316
vσ = 1 4 0.0148 0.0188 0.0168

7 0.1556 0.154 0.1492
8 0.03 0.038 0.0324
1 0.01 0.012 0.0104
2 0.0072 0.0092 0.0088

log-normal 3 0.0272 0.0332 0.0292
vσ = 1 4 0.0152 0.0188 0.0168

7 0.0856 0.0864 0.0812
8 0.0308 0.0384 0.0332
1 0.018 0.0208 0.0188
2 0.0072 0.0092 0.0076

log-normal 3 0.17 0.2268 0.198
vσ = 25 4 0.014 0.0172 0.0148

7 12.6904 3.5976 NC
8 0.0276 0.0312 0.0284
1 0.0104 0.012 0.0108
2 0.0072 0.0092 0.0084
3 0.028 0.032 0.028

gamma 4 0.0148 0.0184 0.0168
α = 25 7 0.0908 0.088 0.076

8 0.03 0.038 0.0336
15 0.2476 0.2072 0.1912
16 0.064 0.0788 0.068
1 0.0116 0.014 0.0116
2 0.0072 0.0088 0.0076
3 0.0472 0.052 0.0444
4 0.0144 0.018 0.0156

gamma 7 0.288 0.2492 0.2432
α = 5 8 0.0304 0.036 0.0316

15 1.6896 1.352 1.1996
16 0.0624 0.0732 0.064
31 9.214 6.372 NC
32 0.138 0.151 0.135
1 0.01 0.012 0.0096
2 0.0068 0.0088 0.0084
3 0.0276 0.0312 0.0284

beta 4 0.0144 0.0184 0.0168
vσ = 1 7 0.0944 0.0916 0.0832

8 0.03 0.0376 0.034
15 0.2648 0.2668 0.2308
16 0.0624 0.0784 0.07
1 0.012 0.0144 0.0128
2 0.0072 0.0092 0.008
3 0.0524 0.0584 0.0556

beta 4 0.0144 0.0184 0.016
vσ = 5 7 0.3004 0.3088 0.2492

8 0.0296 0.0372 0.0316
15 1.3844 1.4768 1.4152
16 0.062 0.0748 0.0672
1 0.01 0.012 0.01
2 0.0072 0.0092 0.0084

uniform 3 0.0268 0.0296 0.0244
vσ = 1 4 0.0144 0.0188 0.0168

7 0.076 0.0724 0.0604
8 0.0312 0.0376 0.0344
1 0.0128 0.016 0.0124
2 0.0068 0.0092 0.008
3 0.0464 0.0524 0.046

uniform 4 0.0144 0.018 0.0168
vσ = 5 7 0.16 0.15 0.1412

8 0.03 0.0372 0.0328
15 0.434 0.3844 0.378
16 0.0632 0.0776 0.072

Table 5.2: IBGS Run Time in Seconds: Average over 25 Runs for c = 0.5 and Single
Random Variable Cross Section with Optimal gPC (ǫ = 10−9)
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P
distribution M IBGS GMRES(8) BiCGStab

1 1177 111 44
2 2277 202 56

normal 3 1162 134 64
vσ = 1 4 4365 388 110

7 1162 242 119
8 8058 703 213
1 1185 111 45
2 2279 202 56

log-normal 3 1166 131 64
vσ = 1 4 4482 384 113

7 1166 174 80
8 8711 757 229
1 1272 158 64
2 1766 162 52

log-normal 3 1990 796 221
vσ = 25 4 3364 280 101

7 4217 3264 NC
8 6498 474 202
1 1087 107 44
2 2324 205 57
3 1075 121 63

gamma 4 4656 395 119
α = 25 7 1074 154 77

8 9346 801 254
15 1074 199 100
16 18841 1588 551
1 1267 117 51
2 2321 198 60
3 1385 201 89

gamma 4 4674 397 141
α = 5 7 1537 338 158

8 9531 752 293
15 1529 560 217
16 19630 1450 618
31 1516 626 NC
32 40593 2700 1229
1 1120 108 44
2 2277 202 56
3 1109 126 59

beta 4 4404 384 110
vσ = 1 7 1109 163 86

8 8416 749 215
15 1109 222 107
16 16050 1412 430
1 1214 126 51
2 2212 181 58
3 1315 214 99

beta 4 4263 381 120
vσ = 5 7 1425 424 182

8 8380 726 246
15 1458 678 257
16 16623 1414 510
1 1213 113 43
2 2277 202 56

uniform 3 1224 128 67
vσ = 1 4 4527 395 111

7 1224 133 63
8 9033 779 220
1 1142 122 48
2 2088 181 54
3 1297 187 84

uniform 4 4054 363 107
vσ = 5 7 1333 243 109

8 8015 705 215
15 1335 259 132
16 15942 1413 426

Table 5.3: IBGS Iteration Counts: c = 0.99 and Single Random Variable Cross
Section with Optimal gPC (ǫ = 10−9)
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P
distribution M IBGS GMRES(8) BiCGStab

1 0.4136 0.0936 0.054
2 0.298 0.0732 0.0292

normal 3 0.9868 0.2656 0.1976
vσ = 1 4 0.573 0.141 0.0568

7 2.9084 1.1396 0.8696
8 1.05 0.255 0.111
1 0.414 0.0936 0.0564
2 0.297 0.0736 0.029

log-normal 3 1.0532 0.2652 0.2012
vσ = 1 4 0.584 0.139 0.058

7 3.2824 0.8904 0.6412
8 1.14 0.278 0.12
1 0.4436 0.1332 0.0792
2 0.23 0.0584 0.0268

log-normal 3 1.818 1.5956 0.6852
vσ = 25 4 0.438 0.102 0.0528

7 11.858 16.5872 NC
8 0.851 0.174 0.108
1 0.3784 0.09 0.0548
2 0.303 0.0748 0.0296
3 0.9272 0.2416 0.1952

gamma 4 0.607 0.143 0.0616
α = 25 7 2.706 0.7284 0.5692

8 1.23 0.291 0.133
15 7.244 2.3424 1.8572
16 2.47 0.58 0.288
1 0.4424 0.0976 0.0628
2 0.302 0.0712 0.0308
3 1.1768 0.4004 0.272

gamma 4 0.609 0.143 0.0716
α = 5 7 3.8676 1.588 1.1628

8 1.24 0.273 0.15
15 10.3232 6.606 4.0132
16 2.57 0.533 0.321
31 29.9836 19.7056 NC
32 5.33 0.999 0.652
1 0.392 0.0916 0.0544
2 0.297 0.0724 0.0292
3 0.9824 0.25 0.1832

beta 4 0.575 0.14 0.0576
vσ = 1 7 2.7956 0.7744 0.6376

8 1.1 0.272 0.113
15 7.4492 2.604 1.9768
16 2.11 0.515 0.23
1 0.4244 0.1052 0.064
2 0.29 0.0656 0.03
3 1.1456 0.4172 0.3008

beta 4 0.555 0.139 0.0616
vσ = 5 7 3.614 1.9984 1.338

8 1.1 0.264 0.128
15 9.8356 8.0016 4.7088
16 2.18 0.518 0.269
1 0.4232 0.0964 0.0536
2 0.297 0.0724 0.0284

uniform 3 1.064 0.2528 0.2048
vσ = 1 4 0.59 0.143 0.0576

7 3.124 0.6304 0.47
8 1.18 0.284 0.116
1 0.3996 0.1032 0.0596
2 0.273 0.066 0.0276
3 1.1324 0.3688 0.2552

uniform 4 0.532 0.131 0.0556
vσ = 5 7 3.3752 1.144 0.7996

8 1.05 0.256 0.113
15 8.9488 3.0452 2.4496
16 2.09 0.515 0.227

Table 5.4: IBGS Run Time in Seconds: Average over 25 Runs for c = 0.99 and Single
Random Variable Cross Section with Optimal gPC (ǫ = 10−9)
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5.4.2 Non-Optimal gPC Expansions

Table 5.5 shows iteration counts for the non-optimal gPC expansion of the uniform

cross section. In comparing the convergence of Hermite chaos for the normal and

uniform cross sections for vσ = 1.0, the iteration counts for SFEM are similar for

P = 1 and P = 3, but iteration counts for the normal cross section are considerably

larger for the normal cross section than the uniform for P = 7. While both systems

destabilize just after this point, for the normal cross section at P = 10 and for the

uniform cross section at P = 9, the spectral radii are smaller for the uniform cross

section than the normal and are roughly the same for P = 3 and P = 7 while those

for the normal cross section increase rapidly between 3 and 7.

When convergence of the SFEM is compared against Legendre chaos, iteration

counts are roughly the same for both variances. However, since the flux can be

represented by a lower order Hermite chaos expansion (P = 7) than Legendre chaos

expansion (P = 15) for vσ = 5.0, Hermite chaos is actually more efficient.

P
c distribution M IBGS GMRES(8) BiCGStab

1 28 13 7
2 52 22 14

uniform 3 28 14 8
vσ = 1 4 104 44 27

7 27 15 8
0.5 8 208 88 53

1 34 17 9
2 52 22 13

uniform 3 51 27 15
vσ = 5 4 103 42 25

7 63 44 25
8 206 85 48

1 1176 111 44
2 2279 202 56

uniform 3 1169 120 63
vσ = 1 4 4457 379 110

7 1165 130 74
0.99 8 8851 744 221

1 1149 123 50
2 2099 180 54

uniform 3 1208 193 98
vσ = 5 4 3761 317 106

7 1246 304 137
8 7227 631 209

Table 5.5: IBGS Iteration Counts: Single Uniform Random Variable with Hermite
gPC (ǫ = 10−9)
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5.4.3 Gaussian Random Processes

Tables 5.6 and 5.7 show iteration counts and run times, respectively, for the SFEM

and SCM when the cross section is a Gaussian random process represented by its

KL expansion. Run times are given as averages over 40 runs for P = 1 and M = 2,

20 runs for P = 3 and M = 4, 15 runs for P = 5 and M = 6 and 10 runs for P = 7

and M = 8. Results are shown for two scattering ratios, three KL orders and several

different PC and SCM quadrature orders. The number of equations for each PC

and SCM quadrature order are listed, with the numbers in parentheses referring to

the number of equations that had to be discarded due to negativities. Once again,

for vσ = 1.0, the SFEM iteration count remains roughly the same as the PC order

increases, while the SCM iteration count per equation remains essentially constant.

Furthermore, the SFEM iteration count remains roughly constant for increasing KL,

as does the SCM iteration count per equation. For both methods, convergence slows

in diffusive regimes.

When there is only a single random variable, the number of coupled equations

in the SFEM system is equal to the number of quadrature points required by the

SCM to achieve roughly the same accuracy and the SCM is faster. However, when

there are additional random variables, the number of equations required by the SCM

increases much more rapidly with increasing PC/quadrature and KL orders than the

number of coupled SFEM equations does. Consequently, even though the SCM is

more efficient than the SFEM for KL = 1, it is more efficient roughly half the time

for KL = 3 and it almost never more efficient for KL = 5. This being said, the SCM

yields good results even when it is necessary to discard terms. Although no problems

were encountered with SFEM in this case, for a high enough PC order, the system will

eventually destabilize since negative cross sections are possible. Therefore, although

SFEM may be more efficient as the dimension of the problem grows, the fact that it

will eventually break down ultimately renders it ineffective in this case.
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P
c KL M equations IBGS GMRES(8) BiCGStab

1 2 26 12 7
2 2 52 22 14
3 4 27 12 7

1 4 4 104 44 28
5 6 27 12 7
6 6 156 66 42
7 8 27 12 7
8 8 208 88 55
1 4 27 12 7
2 8 208 88 56
3 20 28 14 7

0.5 3 4 64 1664 704 437
5 56 30 15 8
6 216 5617 2376 1464
7 120 31 16 10
8 512 12950 5479 3349
1 6 27 12 7
2 32 832 352 223
3 56 29 14 8

5 4 1024 26624 11264 6958
5 252 30 16 9
6 7776 (214) 196584 83182 50838
7 792 32 18 10
8 32768 (3366) 764042 323411 196003

1 2 159 32 20
2 2 312 62 36

1 3 4 159 33 19
4 4 624 123 76
5 6 160 34 19
6 6 934 185 108
1 4 159 32 19
2 8 1249 248 148

0.9 3 3 20 160 36 23
4 64 9968 1963 1191
5 56 160 39 25
6 216 33522 6587 3955
1 6 159 33 18
2 32 4994 991 597

5 3 56 160 37 24
4 1024 159373 31388 18942
5 252 160 41 25
6 7776 (214) 1173362 230635 138501

Table 5.6: IBGS Iteration Counts: Gaussian Random Process with Hermite gPC
(vσ = 1.0 cm−2, ǫ = 10−9)
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P
c KL M equations IBGS GMRES(8) BiCGStab

1 2 0.0095 0.0112 0.01
2 2 0.00725 0.009 0.0085
3 4 0.024 0.026 0.0245

1 4 4 0.015 0.018 0.017
5 6 0.0427 0.038 0.0413
6 6 0.022 0.026 0.022
7 8 0.071 0.062 0.059
8 8 0.031 0.037 0.035
1 4 0.024 0.026 0.024
2 8 0.0293 0.0367 0.0338
3 20 0.294 0.252 0.222

0.5 3 4 64 0.26 0.311 0.289
5 56 1.69 1.27 1.18
6 216 1.07 1.24 1.17
7 120 6.54 4.44 5.06
8 512 (14) 3.15 3.59 3.37
1 6 0.045 0.043 0.041
2 32 0.118 0.145 0.137
3 56 1.6 1.17 1.16

5 4 1024 5.02 5.87 5.5
5 252 25.2 17.5 17.8
6 7776 (214) 70.4 76.1 73.1
7 792 238 168 166
8 32768 (3366) 562 600 573

1 2 0.0568 0.028 0.0255
2 2 0.0408 0.0265 0.0222

1 3 4 0.141 0.0665 0.06
4 4 0.082 0.053 0.048
5 6 0.25 0.117 0.098
6 6 0.123 0.0793 0.0687
1 4 0.136 0.0648 0.06
2 8 0.162 0.104 0.0917

0.9 3 3 20 1.6 0.614 0.632
4 64 1.32 0.854 0.764
5 56 8.77 3.09 3.31
6 216 4.62 3.07 2.75
1 6 0.258 0.114 0.0963
2 32 0.649 0.42 0.372

5 3 56 8.65 2.95 3.19
4 1024 22 14.5 13.1
5 252 135 43.6 45.7
6 7776 (214) 194 139 129

Table 5.7: IBGS Run Time: Gaussian Random Process with Hermite gPC
(vσ = 1.0 cm−2, ǫ = 10−9)
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K-Eigenvalue Problems

In many radiation transport applications, multiplying materials are present, therefore

it is useful to explore the application of polynomial chaos (PC) expansions in these

regimes. In section 6.1, the cross sections are taken to be functions of a single random

variable, and both the Stochastic Finite Element Method (SFEM) and the Stochastic

Collocation Method (SCM) are used to solve for the PC coefficients. The application

of SFEM is described in detail, since the non-linearity introduced by the k-eigenvalue

necessitates a Newton iteration. The accuracy and computational efficiency of SCM

and SFEM are compared for uniform random variables and Legendre chaos. The

SCM is then used to generate PC coefficients and pdfs for the various distributions

explored previously in this thesis. In section 6.2, in a slightly different application,

the fuel enrichment is assumed to a Gaussian random process. The test problem

is a single fuel cell, modeled as a uranium dioxide fuel pin surrounded by a water

moderator with periodic boundary conditions. The base case is a critical reactor,

and SCM is used to generate the PC coefficients and pdfs of the k-eigenvalue for

various correlation lengths and standard deviations in the fuel enrichment.
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6.1 The Cross Sections as Single Random Vari-

ables

To begin, the total cross section is taken to be a single random variable and the

scattering and fission cross sections to be linear functions of the total cross section.

The flux and k-eigenvalue are also functions of the random variable and the transport

equation can then be written as

µ
∂ψ(x, µ;ω)

∂x
+ σ(ω)ψ(x, µ;ω) =

σ(ω)

2

(

c+
νf

k(ω)

)

φ(x;ω) (6.1)

where σs(ω) = cσ(ω) and σf (ω) = fσ(ω). Once again, the problem could be solved

using Monte Carlo, where numerous realizations of the fission cross section are gen-

erated and each corresponding value of k is computed, generally using the power

iteration (Eq. 2.12), and tabulated. Alternatively, polynomial chaos (PC) expan-

sions could be used to represent the stochastic quantities and either the Stochastic

Finite Element Method (SFEM) or the Stochastic Collocation Method (SCM) could

be used to compute the PC expansion coefficients.

6.1.1 The SFEM Approach

Applying PC expansions to each function of the random variable in Eq. 6.1 yields:

µ

P
∑

i=0

Φi

∂ψi(x, µ)

∂x
+

P
∑

i=0

Pσ
∑

j=0

ΦiΦj

(

ψi(x, µ) − c

2
φi(x)

)

σj =

νf

2

P
∑

m=0

P
∑

i=0

Pσ
∑

j=0

ΦmΦiΦjλmφi(x)σj (6.2)

where k has been represented in terms of its inverse,

1

k(ω)
= λ(ω) ≈

P
∑

j=0

Φjλj ,
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so that all of the basis functions are in the numerator. Projecting onto the basis

yields the following system of SFEM equations

µ
∂ψℓ(x, µ)

∂x
+

P
∑

i=0

Pσ
∑

j=0

〈ΦℓΦiΦj〉
〈Φ2

ℓ〉
(

ψi(x, µ) − c

2
φi(x)

)

σj =

νf

2

P
∑

m=0

P
∑

i=0

Pσ
∑

j=0

〈ΦℓΦmΦiΦj〉
〈Φ2

ℓ〉
λmφi(x)σj (6.3)

which can be rewritten as

µ
∂ψℓ

∂x
+

P
∑

i=0

bℓi

(

ψi −
c

2
φi

)

=
ν

2

P
∑

m=0

λm

P
∑

i=0

fℓmiφi, ℓ = 0, . . . , P (6.4)

where

bℓi =

Pσ
∑

j=0

σj

〈ΦℓΦiΦj〉
〈Φ2

ℓ〉

and

fℓmi =
Pσ
∑

j=0

〈ΦℓΦmΦiΦj〉
〈Φ2

ℓ〉
σj .

Application of the angular and spatial discretization refashions Eq. 6.4 in the form

of a matrix equation

P
∑

i=0

(Lℓi −MSℓiD) ~ψi =
P
∑

m=0

λm

P
∑

i=0

MSf,ℓmiD~ψi, ℓ = 0, . . . , P (6.5)

where Lℓi is the streaming and removal operator, M is the moment-to-discrete oper-

ator, Sℓi and Sf,ℓmi are the scattering and fission source matrices, respectively, and D

is the discrete-to-moment operator. Thus, in total there are 2IN(P + 1) equations,

where I is the number of spatial cells and N is the number of quadrature angles,

while the solution vector,

~x = [~ψ0, . . . , ~ψP , λ0, . . . , λP ]T ,
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contains (2IN+1)(P+1) unknowns. The additional (P+1) equations can be derived

from the normalization condition on the eigenfunction

~φT ~φ =
(

D~ψ
)T (

D~ψ
)

= 1 (6.6)

where ~ψ is the exact eigenfunction and is a function of the random dimension. Since

the norm of ~φ is a deterministic quantity, Eq. 6.6 states that for each realization of

the material, the L2-norm of the eigenfunction vector is unity. The eigenfunction can

then be replaced by its PC expansion to yield

P
∑

i=0

P
∑

j=0

(

D~ψi

)T (

D~ψj

)

ΦiΦj = 1. (6.7)

Projecting onto the basis gives the final (P + 1) equations:

P
∑

i=0

P
∑

j=0

(

D~ψi

)T (

D~ψj

)

〈ΦiΦjΦℓ〉 = δℓ0, ℓ = 0, . . . , P. (6.8)

As can be seen in Eq. 6.5, the matrix equation is non-linear since both the eigen-

value and the eigenfunction are unknown, therefore it is necessary to use a non-linear

iterative solver such as Newton-Raphson. The system of equations is first written in

the form

F (~x) = [F0(~x) · · ·FP (~x)FP+1(~x)]
T = 0

where ~x is the solution vector, and the Fℓ are given by

Fℓ(~x) =
P
∑

i=0

(Lℓi − MSℓiD) ~ψi −
P
∑

m=0

λm

P
∑

i=0

MSf,ℓmiD~ψi (6.9a)

FP+1,ℓ(~x) =

P
∑

i=0

P
∑

j=0

(

D~ψi

)T (

D~ψj

)

〈ΦiΦjΦℓ〉 − δℓ0 (6.9b)

for ℓ = 0, . . . , P .
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Expanding F (~x) in a Taylor series around ~x yields

F (~x+ ~δx) = F (~x) + J · ~δx+O( ~δx
2
)

where J is the Jacobian matrix with elements

Jij =
∂Fi

∂xj

.

Since the zeros of F (~x) are desired, the condition F (~x + ~δx) = 0 is imposed and,

neglecting higher-order terms, the equation for the update, ~δx, becomes

J · ~δx(i)
= −F (~x(i)) (6.10)

where i is the iteration index. This equation is solved for ~δx
(i)

using an iterative

method such as a Krylov subspace method and the solution vector is then updated:

~x(i+1) = ~x(i) + ~δx
(i)
. (6.11)

The terms in the Jacobian are determined by taking the derivatives of F (Eq. 6.9)

with respect to the eigenfunctions and eigenvalues (for a detailed derivation of

Eq. 6.12c, see Appendix C):

∂Fℓ

∂ ~ψp

= Lℓp −MSℓpD −
P
∑

m=0

λmMSf,ℓmpD (6.12a)

∂Fℓ

∂λp

= −
P
∑

i=0

MSf,ℓpiD~ψi (6.12b)

∂FP+1,ℓ

∂ψp,k

= 2wm

P
∑

i=0

(

N
∑

n=1

wnψi,k−m+n

)

〈ΦiΦpΦℓ〉 (6.12c)

∂FP+1

∂λp

= 0 (6.12d)

where 0 ≤ ℓ ≤ P , ψp,k is the kth element of ψp for 1 ≤ k ≤ 2IN and m = mod(k,N),

1 ≤ m ≤ N , is the index of the quadrature angle corresponding to ψp,k.
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Newton-Raphson shows quadratic convergence near the solution point, but can

diverge if the initial guess is not sufficiently accurate. Here, the solution is initialized

using either Monte Carlo or the SCM, although there are other possible intializing

algorithms. It is expected that the three methods will yield the same answer for

the PC coefficients of the eigenmode when a sufficient number of terms is kept in

each case. As was shown previously, the SCM using a Gaussian quadrature order

of M is equivalent to SFEM for P = (M − 1) in non-multiplying media. This is an

important consideration since Newton-Raphson may diverge if the initial guess is not

sufficiently accurate.

6.1.2 The SCM Approach

The PC coefficients of the flux and k-eigenvalue can also be computed using SCM,

and is one option for initializing the Newton-Krylov SFEM iteration. The SCM

involves a series of M, where M is the SCM quadrature order, deterministic power

iterations given by Eq. 2.12. Iteration proceeds until

|k(ℓ+1) − k(ℓ)|
k(ℓ+1)

≤ ε

where ε is the tolerance. Power iteration requires an inner source iteration, also

deterministic, to compute the flux. This iteration is given by Eq. 2.9 and proceeds

until

‖~φ(ℓ+1) − ~φ(ℓ)‖2

‖D ~Q‖2

≤ ε.

6.1.3 Numerical Results

Numerical results were obtained for a critical reactor with uncertain macroscopic

cross sections, which were taken to be functions of a single random variable. This
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was accomplished by defining a constant scattering ratio, c, and ‘fission ratio’, f ,

such that σs(ω) = cσt(ω) and σf (ω) = fσt(ω). The test problem was taken from an

analytical benchmark test set originally intended for criticality code verification [88].

The system is a bare slab reactor composed of uranium dioxide with the following

material parameters:

ν 1.70

σf 0.054628

σc 0.027314 cm−1

σs 0.464338 cm−1

σt 0.54628 cm−1

Table 6.1: Test Problem Parameters

The analytic critical size of the reactor is given as 20.74213 cm in [88]. Using 100

spatial cells and 32 discrete ordinates, by trial and error the critical size was found

to be 20.742942196391 cm. Using this critical size and the mean cross sections listed

in Table 6.1, the total cross section is assumed to be randomly distributed according

to one of the pdfs explored previously. The relative accuracy and computational

efficiency of the SFEM and the SCM are compared for a uniformly distributed cross

section pdf and Legendre chaos. The pdfs of the flux and k-eigenvalue as well as

the probability that k > 1, P (k > 1), are also computed using the PC coefficients

of the eigenmode (computed using SCM with a quadrature order of M = (P + 1)).

This is done by sampling the random variable, computing k from its PC expansion

and tabulating the results to generate the pdf and P (k > 1). The results are then

compared with Monte Carlo for various distributions.

Accuracy and Computational Efficiency of the SFEM vs. the SCM

Newton’s iteration requires a ‘good’ inital guess which can be estimated using SCM

or Monte Carlo. SCM is used here to initialize Newton’s method, in part because it
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is more efficient and in part because there are interesting implications to choosing

an initial guess that is not accurate enough, a relationship best explored in the

context of quadrature. Table 6.2 shows iteration counts, run times and L2-Norms of

F for the SCM initialization and a single Newton-Krylov SFEM iteration. The SCM

initialization produces a solution with ‖ FSCM ‖2 on the order of 10−3 or 10−4 in

all cases. A single Newton-Krylov SFEM iteration then produces an ‖ FSFEM ‖2 on

the order of 10−6 or 10−7. Note, however, that these are L2 norms—the individual

elements of FSCM and FSFEM are generally smaller than the norm.

In the previous chapter, it was shown that SCM using a quadrature order of M

is equivalent to SFEM using a PC order of P = (M − 1). The same cannot be said

for multiplying media due to the non-linear nature of the SFEM equations. As can

be seen in Fig. 6.1, the size of ‖ FSCM ‖2 is strongly dependent on the tolerance

set for the power iteration used to compute the k-eigenvalue (see Eq. 2.12) and the

inner source iteration used to compute the flux updates (see Eq. 2.9). For
√

vσ

〈σ〉 = 1
5
,

as the tolerance decreases, ‖ FSCM ‖2 decreases as well and is on the order of 10−8

for a tolerance of 10−12 for P = 7 and 15. However, for P = 1 and 3, ‖ FSCM ‖2

is approximately 10−4 and 10−5, respectively. Even with a very small tolerance,

‖ FSCM ‖2 is quite large for small P, indicating that SCM with a quadrature order of

M = (P + 1) is not in fact equivalent to SFEM with a PC order of P. (In comparison,

consider that if σf and ν are set to zero and a volume source is placed in the system,

SCM with a quadrature order of M = (P + 1) yields ‖ FSCM ‖2 on the order of 10−12

or 10−13 for P = 1, 3, 7 and 15.) However, the fact that ‖ FSCM ‖2 gets very small for

P = 7 as the tolerance gets small indicates that the solution is essentially converged

and that the two methods do eventually converge to the same answer, as would

be expected. Similar conclusions can be drawn for
√

vσ

〈σ〉 = 1√
5
, although clearly the

solution does not converge as quickly as it does for the smaller variance. In Table 6.3,

run times are also shown for
√

vσ

〈σ〉 = 1
5

(run times are almost identical for
√

vσ

〈σ〉 = 1√
5

and are therefore not shown) for various tolerances and PC orders. Although it is
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much more expensive to use a smaller tolerance in SCM, it is not nearly as expensive

as doing even a single SFEM Newton-Krylov iteration. Although doing that SFEM

iteration does produce more accurate results for P = 1 and 3, these solutions are not

converged therefore there is little point in doing the extra work.

SCM Initialize SFEM√
vσ

〈σ〉 PC M GMRES(8) run time (s) ‖ FSCM ‖2 GMRES(25) run time (s) ‖ FSFEM ‖2

1 2 102 0.217 3.2355e-04 20 0.723875 2.6288e-07
3 4 211 0.45 3.0228e-04 39 5.9535 2.3297e-07

1
5

7 8 420 0.904 3.2456e-04 90 60.283 2.5748e-07
15 16 847 1.8 3.2652e-04 125 536.956 1.9739e-07

1 2 108 0.228 2.2224e-03 21 0.7538 1.4410e-06
3 4 214 0.457 1.3736e-03 98 9.4105 8.5795e-07

1√
5

7 8 433 0.924 4.3315e-04 187 130.33 4.8508e-07

15 16 862 1.84 4.2298e-04 253 1148.068 5.2655e-07

Table 6.2: Iteration Counts, Run Times and Errors for the SCM and a Single SCM-
initialized SFEM Iteration in a Multiplying Material: Uniform Random Variable and
Legendre Chaos (SCM tolerance = 10−6)

..

Figure 6.1: ‖ FSCM ‖2 as a Function of Tolerance for Various PC Orders (Solid Lines:√
vσ

〈σ〉 = 1
5
, Dashed Lines:

√
vσ

〈σ〉 = 1√
5
)

It is also interesting to explore the effect of using a quadrature order other than
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tolerance P = 1 P = 3 P = 7 P = 15

10−3 0.08 0.16 0.39 0.64

10−6 0.217 0.45 0.904 1.8

10−9 0.36 0.76 1.44 2.9

10−12 0.66 1.29 2.58 5.04

Table 6.3: Runtime for SCM for M = (P + 1) in seconds: Uniform Random Variable

and Legendre Chaos (
√

vσ

〈σ〉 = 1
5
)

M = (P + 1) to initialize Newton’s method. Fig. 6.2 shows ‖ FSCM ‖2 and Newton

iteration counts necessary to obtain ‖ FSFEM ‖2≤ 10−6 as a function of M for various

PC orders and a tolerance of 10−6 for the power and source iterations in SCM. As

can be seen, M = (P + 1) is generally optimal (a single Newton iteration is required),

and choosing an M that is too small produces an initial guess that causes Newton to

diverge (thus the missing data points). When M < (P + 1) and Newton’s iteration

will converge, ‖ FSCM ‖2 is large, and numerous Newton iterations are required in

the SFEM step. The number of iterations grows with PC order and is larger when

the variance is larger. For
√

vσ

〈σ〉 = 1
5
, when P = 1, ‖ FSCM ‖2 jumps up sharply for

M = 4, but then levels off. This indicates that M = 4 produces converged results

for the two PC coefficients, therefore increasing the quadrature order does not affect

the solution. For P = 3, there is a slight jump in the plot between M = 4 and M = 8

and then the line levels out, once again indicating that M = 8 produces converged

results. For P = 7 and 15, M ≥ (P +1) produce roughly the same results, indicating

that for P = 7 the PC expansion is converged as is SCM with M = (P + 1). Similar

conclusions can be drawn for
√

vσ

〈σ〉 = 1√
5
, except in this case, the jumps between

M = (P + 1) and 2(P + 1) are much more pronounced. Also, the solution clearly

requires P = 15 and M = 16 to converge.
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..

(a) ‖ FSCM ‖2

..

(b) Newton Iterations

Figure 6.2: ‖ FSCM ‖2 and Newton Iteration Counts Necessary to Achieve
‖ FSCM ‖2≤ 10−6 as a Function of Quadrature Order for Various PC Orders: Uni-

form Random Variable and Legendre Chaos (Solid Lines:
√

vσ

〈σ〉 = 1
5
, Dashed Lines:

√
vσ

〈σ〉 = 1√
5
)
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Convergence of the PC Expansion

Using a PC order of P assumes—though the assumption may not be correct—that the

eigenmode can be well-approximated using a P-dimensional polynomial. Therefore

the integral with the highest-order polynomial is the one used for calculating the Pth

moment of the k-eigenvalue, 〈kΦP 〉, or flux, 〈φΦP 〉, with the integrand assumed to

be a polynomial of order 2P. A quadrature order of M = (P + 1) can calculate the

integral of a (2P+1)-dimensional polynomial exactly, and is therefore the smallest

quadrature order that will yield ‘exact’ results if the eigenmode is, as assumed,

well-approximated using a P-dimensional polynomial. Clearly, there is no point in

computing coefficients of order M and greater because the quadrature will not yield

an exact result. Tables 6.4 through 6.10 show the PC coefficients of the k-eigenvalue

computed using several different quadrature orders and Monte Carlo for various

distributions using their optimal gPCs. Figs. 6.3 through 6.9 show the pdfs of k

for various PC orders, P, computed using a quadrature order of M = (P + 1) for the

same distributions and gPCs. Several general conclusions can be drawn:

1. Higher-order PC coefficients require higher-order quadrature orders to achieve

convergence. This is expected given that the ith coefficient is defined to be the

inner product of k with an ith-order polynomial. This also explains why the

mean (k0) converges more quickly than the standard deviation.

2. For larger standard deviations, higher quadrature and PC orders are required

to achieve convergence of the mean, the standard deviation and the pdf of k.

3. Even when the mean and standard deviation of the cross section are similar,

different distributions yield dissimilar pdfs, means and standard deviations of

k. To reiterate, it is important to represent the pdf of the uncertain input

faithfully in order to achieve accurate results.
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4. Although PC orders of 15 and 31 generally yield converged results for the mean

and reasonably accurate estimations of the standard deviation, the higher-order

PC coefficients are clearly not converged. Because these coefficients are small

(their magnitudes decrease as the order increases), this does not seem to impact

the accuracy of the standard deviation or the pdfs.

Table 6.11 shows the probability that k > 1, P (k > 1), as computed using

various PC orders and Monte Carlo. As can be seen, the probability is generally close

to 50%, but varies somewhat between distributions. For the uniform distribution,

the probability appears to be unaffected by different variances (0.50037 in both

cases), while the probabilities are quite different for the beta distribution (0.51520

for
√

vσ

〈σ〉 = 1
5

vs. 0.46884 for
√

vσ

〈σ〉 = 1√
5
). It should also be noted that the PC result

reproduces the Monte Carlo result quite accurately.
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M 2 4 8 16 32
PC
0 9.9048926e-01 9.8984298e-01 9.8984507e-01 9.8984493e-01 9.8984490e-01
1 4.3205783e-02 4.7289937e-02 4.7291405e-02 4.7291271e-02 4.7291315e-02
2 – -1.1109893e-02 -1.1159513e-02 -1.1159306e-02 -1.1159495e-02
3 – 1.9970501e-03 2.1786374e-03 2.1782935e-03 2.1785835e-03
4 – – -3.5366639e-04 -3.5304162e-04 -3.5337401e-04
5 – – 4.3702816e-05 4.2824039e-05 4.3121872e-05
6 – – -2.7295965e-06 -1.8000414e-06 -2.0055542e-06
7 – – -2.4120222e-07 -9.7200317e-07 -8.6072010e-07
8 – – – 4.0831278e-07 3.6071365e-07
9 – – – -1.0698041e-07 -9.1590640e-08
10 – – – 2.1499390e-08 1.8285807e-08
11 – – – -2.8261174e-09 -2.7424409e-09
12 – – – -1.2939309e-10 1.1963629e-10
13 – – – 2.2757532e-10 1.1346185e-10
14 – – – -7.8351707e-11 -5.1092879e-11
15 – – – 1.3994970e-11 1.1728086e-11

stdev 4.3205783e-02 5.0071218e-02 5.0172323e-02 5.0171972e-02 5.0172226e-02

Table 6.4: Normal Distribution: Hermite chaos coefficients and standard deviation of
the k-eigenvalue calculated using M-dimensional Gauss-Hermite quadrature (

√
vσ

〈σ〉 =
1
5

). The mean and standard deviation given by Monte Carlo are 9.8989716e-01 and
5.0070048e-02, respectively.

..

Figure 6.3: PDF of the k-eigenvalue: Hermite Chaos expansion of the Normal Dis-
tribution (

√
vσ

〈σ〉 = 1
5
)
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M 2 4 8 16 32
PC
0 9.9117110e-01 9.9063547e-01 9.9063510e-01 9.9063510e-01 9.9063510e-01
1 -7.9124638e-03 -8.5647794e-03 -8.5666363e-03 -8.5666355e-03 -8.5666355e-03
2 – -7.0355653e-04 -7.0732669e-04 -7.0732540e-04 -7.0732540e-04
3 – -6.5316396e-05 -7.1276946e-05 -7.1275191e-05 -7.1275191e-05
4 – – -8.1681261e-06 -8.1660532e-06 -8.1660532e-06
5 – – -1.0088119e-06 -1.0067049e-06 -1.0067049e-06
6 – – -1.2742634e-07 -1.2572146e-07 -1.2572149e-07
7 – – -1.5010370e-08 -1.4293198e-08 -1.4293225e-08
8 – – – -9.7816246e-10 -9.7819425e-10
9 – – – 1.9328363e-10 1.9324084e-10
10 – – – 1.3036439e-10 1.3031426e-10
11 – – – 4.9384935e-11 4.9334075e-11
12 – – – 1.5972332e-11 1.5927449e-11
13 – – – 4.7701879e-12 4.7392684e-12
14 – – – 1.3281553e-12 1.3212833e-12
15 – – – 3.1058141e-13 3.3930500e-13

stdev 3.9562319e-02 4.4802201e-02 4.4873599e-02 4.4873564e-02 4.4934167e-02

Table 6.5: Gamma Distribution: Laguerre chaos coefficients and standard devia-
tion of the k-eigenvalue calculated using M-dimensional Gauss-Laguerre quadrature
(

√
vσ

〈σ〉 = 1
5

). The mean and standard deviation given by Monte Carlo are 9.9063305e-
01 and 4.4871171e-02, respectively.

..

Figure 6.4: PDF of the k-eigenvalue: Laguerre Chaos expansion of the Gamma
Distribution (

√
vσ

〈σ〉 = 1
5
)
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M 2 4 8 16 32
PC
0 9.6224972e-01 9.5207180e-01 9.5190828e-01 9.5191928e-01 9.5191913e-01
1 -3.3482827e-02 -4.5909100e-02 -4.6428891e-02 -4.6413108e-02 -4.6413242e-02
2 – -1.3613081e-02 -1.4566236e-02 -1.4546635e-02 -1.4546801e-02
3 – -3.6908415e-03 -5.1284574e-03 -5.1071834e-03 -5.1073827e-03
4 – – -1.9356586e-03 -1.9158681e-03 -1.9160854e-03
5 – – -7.5764394e-04 -7.4353962e-04 -7.4376211e-04
6 – – -2.9321399e-04 -2.9001190e-04 -2.9022470e-04
7 – – -9.5833612e-05 -1.0964111e-04 -1.0982562e-04
8 – – – -3.7602625e-05 -3.7736569e-05
9 – – – -9.5739211e-06 -9.6318299e-06
10 – – – 4.7722969e-07 5.2317629e-07
11 – – – 3.3132436e-06 3.4917656e-06
12 – – – 3.4100748e-06 3.7485854e-06
13 – – – 2.6057514e-06 3.1275591e-06
14 – – – 1.6255223e-06 2.3466654e-06
15 – – – 7.3124926e-07 1.6570647e-06

stdev 7.4869877e-02 1.1745105e-01 1.2343850e-01 1.2331635e-01 1.2331795e-01

Table 6.6: Gamma Distribution: Laguerre chaos coefficients and standard devi-
ation of the k-eigenvalue calculated using M-dimensional Gauss-Laguerre quadra-
ture (

√
vσ

〈σ〉 = 1√
5

). The mean and standard deviation given by Monte Carlo are
9.5179068e-01 and 1.2346672e-01, respectively.

..

Figure 6.5: PDF of the k-eigenvalue: Laguerre Chaos expansion of the Gamma
Distribution (

√
vσ

〈σ〉 = 1√
5
)
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M 2 4 8 16 32
PC
0 9.9048926e-01 9.8992239e-01 9.8992304e-01 9.8992289e-01 9.8992296e-01
1 1.8002409e-02 1.9486510e-02 1.9487668e-02 1.9487655e-02 1.9487677e-02
2 – -3.3316200e-03 -3.3418840e-03 -3.3418571e-03 -3.3418661e-03
3 – 5.9792078e-04 6.3897759e-04 6.3898153e-04 6.3897539e-04
4 – – -1.2536296e-04 -1.2535749e-04 -1.2535722e-04
5 – – 2.3083333e-05 2.3042586e-05 2.3043511e-05
6 – – -3.3502510e-06 -3.2534967e-06 -3.2527970e-06
7 – – 1.8003082e-07 -1.2150618e-08 -1.1677261e-08
8 – – – 2.6936837e-07 2.6899917e-07
9 – – – -1.4457367e-07 -1.4491513e-07
10 – – – 5.4956140e-08 5.5022594e-08
11 – – – -1.6676232e-08 -1.6826328e-08
12 – – – 3.2651509e-09 3.3236039e-09
13 – – – 2.4665237e-10 8.3946253e-10
14 – – – -5.6707110e-10 -6.7947352e-10
15 – – – 3.2351697e-10 -3.1111449e-10

stdev 4.3205783e-02 4.9111833e-02 4.9166884e-02 4.9166818e-02 4.9166875e-02

Table 6.7: Beta Distribution: Jacobi chaos coefficients and standard deviation of
the k-eigenvalue calculated using M-dimensional Gauss-Jacobi quadrature (

√
vσ

〈σ〉 =
1
5

). The mean and standard deviation given by Monte Carlo are 9.8987671e-01 and
4.9139733e-02, respectively.

..

Figure 6.6: PDF of the k-eigenvalue: Jacobi Chaos expansion of the Beta Distribu-
tion (

√
vσ

〈σ〉 = 1
5
)
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M 2 4 8 16 32
PC
0 9.5467453e-01 9.4398979e-01 9.4418209e-01 9.4417876e-01 9.4417866e-01
1 6.9317150e-02 9.2760635e-02 9.2712940e-02 9.2718270e-02 9.2718366e-02
2 – -4.4179281e-02 -4.4902664e-02 -4.4909303e-02 -4.4909410e-02
3 – 1.7405680e-02 2.0424498e-02 2.0428979e-02 2.0429180e-02
4 – – -8.3810278e-03 -8.3743112e-03 -8.3746218e-03
5 – – 2.9121999e-03 2.8765395e-03 2.8769452e-03
6 – – -7.3995888e-04 -6.4882081e-04 -6.4935346e-04
7 – – 8.3937338e-05 -8.5840000e-05 -8.5112948e-05
8 – – – 2.2292803e-04 2.2195481e-04
9 – – – -1.7135114e-04 -1.7008850e-04
10 – – – 9.2744826e-05 9.1106593e-05
11 – – – -3.5814469e-05 -3.3693807e-05
12 – – – 5.2543709e-06 2.4923979e-06
13 – – – 6.6701960e-06 1.0400704e-05
14 – – – -8.2214058e-06 -1.3372338e-05
15 – – – 5.0018343e-06 1.2086451e-05

stdev 9.2998715e-02 1.4439623e-01 1.4668761e-01 1.4669649e-01 1.4669683e-01

Table 6.8: Beta Distribution: Jacobi chaos coefficients and standard deviation of
the k-eigenvalue calculated using M-dimensional Gauss-Jacobi quadrature (

√
vσ

〈σ〉 =
1√
5

). The mean and standard deviation given by Monte Carlo are 9.4413453e-01 and
1.4656023e-01, respectively.

..

Figure 6.7: PDF of the k-eigenvalue: Jacobi Chaos expansion of the Beta Distribu-
tion (

√
vσ

〈σ〉 = 1√
5
)
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M 2 4 8 16 32
PC
0 9.9048926e-01 9.9024514e-01 9.9024506e-01 9.9024519e-01 9.9024514e-01
1 7.4834610e-02 7.7446692e-02 7.7447096e-02 7.7447138e-02 7.7447142e-02
2 – -1.9970666e-02 -1.9976612e-02 -1.9976831e-02 -1.9976745e-02
3 – 3.8271161e-03 3.8974476e-03 3.8973630e-03 3.8973713e-03
4 – – -6.3352402e-04 -6.3354386e-04 -6.3359736e-04
5 – – 8.7652225e-05 8.7562341e-05 8.7546595e-05
6 – – -1.0000429e-05 -9.8359568e-06 -9.8723376e-06
7 – – 8.2906323e-07 9.0514046e-07 9.2006423e-07
8 – – – 6.0098411e-08 1.5379122e-07
9 – – – 5.9547242e-08 -4.7999585e-08
10 – – – 1.5888445e-08 -5.3018272e-08
11 – – – -2.4264053e-07 -1.4885961e-07
12 – – – -1.3932848e-07 -3.6822944e-08
13 – – – -2.2772697e-07 -1.0147724e-07
14 – – – -1.1314019e-08 -1.4428400e-07
15 – – – 2.4933391e-07 4.4898787e-08

stdev 4.3205783e-02 4.5620039e-02 4.5622135e-02 4.5622177e-02 4.5622172e-02

Table 6.9: Uniform Distribution: Legendre chaos coefficients and standard devia-
tion of the k-eigenvalue calculated using M-dimensional Gauss-Legendre quadrature
(

√
vσ

〈σ〉 = 1
5

). The mean and standard deviation given by Monte Carlo are 9.9024757e-
01 and 4.5642910e-02, respectively.

..

Figure 6.8: PDF of the k-eigenvalue: Legendre Chaos expansion of the Uniform
Distribution (

√
vσ

〈σ〉 = 1
5
)
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M 2 4 8 16 32
PC
0 9.4609085e-01 9.3863470e-01 9.3868757e-01 9.3868753e-01 9.3868753e-01
1 1.9826274e-01 2.3779240e-01 2.3768979e-01 2.3768991e-01 2.3768991e-01
2 – -1.3622486e-01 -1.3663493e-01 -1.3663512e-01 -1.3663513e-01
3 – 5.3841896e-02 5.7784918e-02 5.7784809e-02 5.7784861e-02
4 – – -1.9372933e-02 -1.9371860e-02 -1.9371855e-02
5 – – 4.9475895e-03 4.9401349e-03 4.9400463e-03
6 – – -7.0918450e-04 -6.7864940e-04 -6.7875303e-04
7 – – -9.8700897e-05 -1.8911494e-04 -1.8918880e-04
8 – – – 2.0139181e-04 2.0154512e-04
9 – – – -1.0199455e-04 -1.0188037e-04
10 – – – 3.8285453e-05 3.8252275e-05
11 – – – -1.1053492e-05 -1.1033282e-05
12 – – – 1.9252220e-06 2.1341570e-06
13 – – – 5.6814130e-08 1.6997990e-07
14 – – – -3.3195335e-07 -5.3813780e-07
15 – – – 3.6792861e-07 4.8149779e-08

stdev 1.1446705e-01 1.5157172e-01 1.5194389e-01 1.5194395e-01 1.5194395e-01

Table 6.10: Uniform Distribution: Legendre chaos coefficients and standard devi-
ation of the k-eigenvalue calculated using M-dimensional Gauss-Legendre quadra-
ture (

√
vσ

〈σ〉 = 1√
5

). The mean and standard deviation given by Monte Carlo are
9.3865797e-01 and 1.5201495e-01, respectively.

..

Figure 6.9: PDF of the k-eigenvalue: Legendre Chaos expansion of the Uniform
Distribution (

√
vσ

〈σ〉 = 1√
5
)
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Normal Gamma Beta Uniform
Distribution √

vσ

〈σ〉 = 1
5

√
vσ

〈σ〉 = 1
5

√
vσ

〈σ〉 = 1√
5

√
vσ

〈σ〉 = 1
5

√
vσ

〈σ〉 = 1√
5

√
vσ

〈σ〉 = 1
5

√
vσ

〈σ〉 = 1√
5

PC Order
1 0.413364 0.386870 0.268801 0.414601 0.303021 0.435864 0.363985
3 0.509628 0.477960 0.435462 0.506159 0.494431 0.501563 0.520201
7 0.500329 0.473100 0.441543 0.499182 0.467738 0.499945 0.499794
15 0.500498 0.473130 0.440362 0.499199 0.467479 0.499946 0.499908
31 0.500417 0.470020 0.440672 0.499199 0.467480 0.499946 0.499908
MC 0.500056 0.471200 0.440901 0.501520 0.468840 0.500370 0.500373

Table 6.11: Probability that k > 1 for various PC orders and Cross Section Distri-
butions as computed by (P+1)-dimensional Gaussian Quadrature and Monte Carlo

6.2 The Fission Cross Section as a Random Pro-

cess

6.2.1 Modeling a Critical Reactor with Uncertain Fuel Den-

sity

We now consider a reactor assembly in which the fuel enrichment contains some un-

certainty, although the analysis could easily be extended to accomodate uncertainties

in the number density or microscopic cross section. The test case is a reactor mod-

eled in one-dimension as a single assembly, consisting of a uranium dioxide fuel pin

surrounded by a light water moderator of equal thickness on each side, with periodic

boundary conditions. The uranium is enriched to 1w/o
235U on average, and the

remainer of the uranium is 238U. It is assumed that the enrichment varies randomly

within the pin, thus the macroscopic cross section also varies as a function of space

and the pin material itself appears to be stochastic. The weight percent of 235U, w235,

is assumed to be a second-order Gaussian random process with covariance kernel Cw

and expectation value E [w235(x)] = 〈w235(x)〉. For notational clarity, a zero-mean

‘random part,’ w̃235(x, ω) = w235(x, ω) − 〈w235(x)〉, is defined. The number density
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is then the expanded in the following KL expansion:

w235(x, ω) = 〈w235(x)〉 +
K
∑

k=1

√

λkφk(x)ξk(ω) (6.13)

where the expansion is truncated at order k. The exponential kernel is again used

to represent the covariance (equation 3.1).

In order to study the effect that stochasticity has on the criticality of the system,

a critical system is created by manually adjusting the dimensions of the fuel pins

through trial and error. Then, by setting the mean of the fission cross section to the

critical value, it is possible to explore the effect that variability in the fuel enrichment

has on k for various variances. Among the quantities of interest are the moments

and pdfs of the k-eigenvalues, which are computed using SCM.

6.2.2 Numerical Results

The critical size of the system, with periodic boundary conditions, was found to be

L = 0.37400115 cm UO2 enriched to 1w/o
235U with 3.0 cm of water on either side.

The weight percent 235U was expanded in a KL expansion with standard deviations,

σw, of 0.05w/o, 0.10w/o and 0.20w/o and correlation lengths of L cm, 0.5L cm, 0.1L

cm and 0.05L cm. The macroscopic cross sections for the water reflector were taken

to be σf = 0.0 cm−1, σγ = 0.022211 cm−1 and σt = 2.1667 cm−1. The data used for

Uranium is shown in Table 6.12.

238U 235U

M (g/mole) 238.0507847 235.0439242

ν 2.492088 2.436700

σf (barns) 1.680824E-5 585.2935

σγ (barns) 2.684817 98.75446

σt (barns) 11.98424 699.1633

Table 6.12: Test Problem Parameters: Uranium
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The PC coefficients of the k-eigenvalue were computed using SCM with M = (P + 1)

for each random variable. Pdfs were then generated by sampling the Gaussian ran-

dom variables 106 times and using the sampled values to compute k from its PC

expansion. Figure 6.10 shows the PDF of k-eigenvalues for λc = L, λc = 0.5L,

λc = 0.1L and λc = 0.05L for various σw. In all cases, KL = 5 and P = 3, for which

the pdfs were found to be converged. As can be seen, the distributions are slightly

skewed, with peaks at k > 1, but falling off more quickly on the right than the left.

This effect is most noticeable for σw = 0.20w/o. As would be expected, for larger

standard deviations, the distribution is more spread out, so the probability of k de-

parting from unity in either direction is larger. As the correlation length gets larger,

the distribution also becomes more spread out.

From the same set of data, it is possible to generate the probability that the

reactor will be supercritical, with results shown in Table 6.13 for various standard

deviations and correlation lengths for various KL and PC orders. The model predicts

that the reactor will be supercritical approximately 50% of the time in all cases. This

number is essentially unaffected by the standard deviation of the enrichment or the

correlation length, although, as mentioned before, the distributions vary drastically

between these various cases. Since the enrichment and, by extension, the macro-

scopic cross section are Gaussian random processes, they are distributed according

to the Gaussian distribution, which is symmetric, at each point in space. Given the

symmetry of the representation, the fact that the pdfs of k are essentially symmetric

about unity and that P (k > 1) ≈ 0.5 is not entirely surprising.

The mean and standard deviation of the k-eigenvalues computed using the PC

expansion of k are shown in Table 6.14. The mean and standard deviation of k are

shown for λc = L, λc = 0.5L, λc = 0.1L and λc = 0.05L, and the PC coefficients for a

PC order of P are computed using a Gauss-Hermite quadrature of order M = (P + 1).

As can be seen, the mean is essentially converged for P = 1 for λc = 0.05L and
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..

(a) λc = L
..

(b) λc = 0.5L

..

(c) λc = 0.1L

..

(d) λc = 0.05L

Figure 6.10: PDF of k-eigenvalues (KL = 5, P = 3)

PC 1 3 5

KL
XXXXXXλc

σw 0.20 0.10 0.05 0.20 0.10 0.05 0.20 0.10 0.05

L 0.467633 0.483968 0.492239 0.501149 0.500569 0.500497 0.500462 0.500488 0.500489
0.5L 0.471583 0.485961 0.493238 0.500931 0.500537 0.500494 0.500475 0.500488 0.500489

1
0.1L 0.484527 0.492517 0.496494 0.500556 0.500495 0.500489 0.500488 0.500489 0.500489
0.05L 0.489208 0.494930 0.497670 0.500509 0.500489 0.500489 0.500489 0.500489 0.500489

L 0.467959 0.484138 0.492258 0.501638 0.500812 0.500619 0.500919 0.500719 0.500603
0.5L 0.472129 0.486320 0.493289 0.501542 0.500782 0.500564 0.501049 0.500724 0.500560

3
0.1L 0.485034 0.492556 0.496396 0.501363 0.500763 0.500497 0.501260 0.500755 0.500496
0.05L 0.489235 0.494686 0.497386 0.500977 0.500545 0.500352 0.500951 0.500542 0.500351

L 0.467969 0.484127 0.492268 0.501681 0.500811 0.500629 0.499917 0.499714 0.499607
0.5L 0.472140 0.486350 0.493359 0.501505 0.500759 0.500509 0.500195 0.499849 0.499654

5
0.1L 0.485360 0.492840 0.496645 0.501687 0.501046 0.500744 0.500932 0.500370 0.500098
0.05L 0.489675 0.495018 0.497714 0.501405 0.500916 0.500660 0.500760 0.500257 0.499982

Table 6.13: Probability that k > 1
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λc = 0.1L, but P = 3 is required when λc = 0.5L and λc = L. Given the fact that

the pdfs of k are more spread out for larger λc, this result is to be expected. Also,

the standard deviation does not converge as quickly as the mean, requiring P = 3

for smaller λcs. The standard deviation in k also increases with σw, as can been seen

in the pdf graphs.

λc σw P = 1 P = 3 P = 5

0.992705 0.992601 0.992601
0.20

0.0899584 0.0918768 0.0918798
0.998184 0.9981781 0.998178

L 0.10
0.0447627 0.0449926 0.0449927
0.999547 0.999546 0.999546

0.05
0.0223544 0.0223828 0.0223828

0.994444 0.994383 0.994383
0.20

0.0789263 0.0802071 0.0802085
0.998615 0.998611 0.998611

0.5L 0.10
0.0393231 0.0394783 0.0394783
0.999654 0.999654 0.999654

0.05
0.0196440 0.0196633 0.0196633

0.998326 0.998321 0.998321
0.20

0.0442899 0.0444983 0.0444983
0.999582 0.999581 0.999581

0.1L 0.10
0.0221200 0.0221458 0.0221458
0.999895 0.999895 0.999895

0.05
0.0110569 0.0110601 0.0110601

0.999134 0.999133 0.999133
0.20

0.0320465 0.0321210 0.0321210
0.999784 0.999784 0.999784

0.05L 0.10
0.0160127 0.0160220 0.0160220
0.999946 0.999946 0.999946

0.05
0.00800502 0.00800618 0.00800618

Table 6.14: < k > (top) and σ<k> (bottom): KL=5
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Conclusions and Future Work

The Stochastic Finite Element Method (SFEM) and Stochastic Collocation Method

(SCM) have been used in a variety of fields to apply PC expansions to uncertainty

quantification. The work conducted here is a preliminary examination of the effec-

tiveness and efficiency of these methods when applied to uncertainty quantification

in radiation transport. Two types of problems were explored: Those in which the

uncertain inputs are functions of single random variables, uniform in space, and

those in which the uncertain inputs are random processes, varying in space. In all

cases, the SCM and SFEM were shown to yield accurate results in comparison with

Monte Carlo or analytic solutions. In the single random variable case, the SCM was

shown to be much more efficient than the SFEM, yielding comparable results for

M = (P + 1) at a fraction of the cost. The SCM becomes increasingly more efficient

than SFEM as the number of PC terms in the expansion increases. In addition, the

SCM requires a series of independent deterministic transport computations and can

therefore be ‘wrapped around’ an existing transport code, requiring no modification

to the tranport computation itself. SFEM, on the other hand, produces a coupled

system of transport equations and its solution requires an entirely new algorithm.

Furthermore, SFEM is plagued with convergence issues when an unphysical distri-
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bution such as a Gaussian is used to represent a strictly positive parameter. While

the extra work associated with the SFEM in comparison with the SCM is clearly

not worthwhile when there is only one random variable, it was shown that when

used in concert with a Karhunen-Lòeve (KL) representation of a spatially varying

cross section, the SFEM becomes increasingly more efficient as the number of ran-

dom variables increases. This is due to the fact that the number of terms in the

PC expansion, hence the number of coupled SFEM equations, does not increase as

rapidly as the number of terms in the quadrature tensor product. This additional

cost may be offset somewhat by the use of sparse grid quadratures [89] for higher

dimensions (they can require more function evaluations than a tensor product to

achieve the same accuracy for smaller dimensions), a topic for future research. This

is particularly important when the distribution is Gaussian because SFEM will be

unstable for higher PC orders.

In multiplying media, a Newton-Krylov iteration is required to compute the

SFEM solution since the presence of the k-eigenvalue makes the equations non-linear.

As was shown, this iteration must be carefully initialized using SCM or Monte Carlo,

and even a single Newton-Krylov iteration is far more time-consuming than an SCM

initialization, which can achieve a high level of accuracy quite cheaply. In addition,

the effort required to write an entirely new code to conduct the computation renders

the method somewhat less attractive. In radiation transport problems, multiplying

materials are frequently present, so SCM would seem to be the method of choice for

general application.

Many interesting research topics remain. Multiple random variables were incor-

porated using a KL expansion to represent the cross section, but this method is

limited since the expansion is only strictly correct when the random variables in the

expansion are Gaussian. Other random processes can be represented using trans-

forms which allow them to be represented using Gaussian random variables. This
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was demonstrated for log-normal random processes, for which the transformation is

obvious, but could be applied to other distributions. Given the problems associated

with using Gaussian random variables, a new method for representing stochastic

random processes would also be a welcome (and nontrivial) development. Another

interesting case that should be examined is uncertain inputs that can be represented

using independent single random variables. The output would still be a function of

each of these random variables and solution would proceed in the same manner as it

did when the KL expansion was utilized.

In small scale applications for independent, uncorrelated random variables, such

as those explored, the use of PC expansions is efficient and effective. The advantage

to using PC expansions to represent problem outputs is that those quantities can be

completely characterized using the PC moments. Thus, a relatively small dataset

contains all of the information necessary to construct pdfs and cdfs, define responses

of specific outputs to inputs, and compute statistical moments. In short, it is capable

of producing the same results as the sampling-based approaches typically employed in

nuclear applications for uncertainty quantification. The disadvantage is that, in order

to extract anything more than the moments of the output, it is necessary to sample

the random variables involved. Thus post-processing can be quite computationally

demanding, although not as demanding as conducting a Monte Carlo simulation

on the entire system. Furthermore, computationally demanding analyses such as

risk assessments for nuclear reactors and the Department of Energy’s nuclear waste

repository in Yucca Mountain can require 10s to 100s of uncertain inputs, which

may in addition be correlated [90]. As the number of dimensions increases, the

number of quadrature points required by SCM and the number of terms in the PC

expansion increase rapidly—e.g., if there are 100 random variables and a (small) PC

order of 5 is used, there are more than 96.5 million PC coefficients in the expansion!

Indeed, it may be that an optimized multi-dimensional sampling method such as

Latin Hypercube, which is already in widespread use for problems of this sort, may
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be more efficient than SCM for large-scale applications. It would be enlightening to

conduct an analysis on a real-world system of this scale.
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Appendix A

Orthogonal Polynomials and

Gaussian Quadrature

Polynomial Chaos (PC) expansions, which play a key role in this research, represent

random parameters as expansions in terms of orthogonal polynomials written in

terms of random variables. The theory of Gaussian quadrature, which also plays a

prominent part, relies heavily on orthogonal polynomials. A system of polynomials

{Qn(x), n ∈ N}, where N = {0, 1, 2, . . .}, is orthogonal with respect to ρ(x) if
∫

S
Qn(x)Qm(x)ρ(x)dx = d2

nδmn, n,m ∈ N . (A.1)

All such orthogonal polynomials on the real line satisfy the following three-term

recurrence relation:

−xQn(x) = bnQn+1(x) + γnQn(x) + cnQn−1(x), n ≥ 1 (A.2)

where bn, cn 6= 0 and cn/bn−1 > 0. Hypergeometric differential equations of the form

s(x)y′′ + τ(x)y′ + λy = 0 (A.3)

have as their solutions functions of the hypergeometric type. If

λ = λn = −nτ ′ − 1

2
n(n− 1)s′′, (A.4)
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then the solutions of Eq. A.3, y(x) = yn(x) for integer n, are polynomials of degree

n which form an orthogonal set that satisfies Eq. A.1 where

(s(x)ρ(x))′ = τ(x)ρ(x). (A.5)

These polynomials are known as the classical orthogonal polynomials of a continuous

variable and include the Bessel, Romanovski, Jacobi, Laguerre and Hermite families

of polynomials [91].

Gaussian quadrature rules approximate integrals using a finite number of function

evaluations which are then multiplied by appropriate weights and summed:

∫ b

a

w(x)f(x)dx ≈
M
∑

m=1

wmf(xm) (A.6)

where w(x) is a weight function and the wm and xm are the quadrature weights and

abscissas, respectively. The abscissas of a Gaussian quadrature of order M in the

interval (a, b) with weight function w(x) are simply the M roots of an orthogonal

polynomial of degree M, which also lie in the interval (a, b). The appropriate set of

orthogonal polynomials satisfies the relation:

∫ b

a

w(x)pi(x)pj(x)dx = δij.

The weights are then given by:

wm =
〈pM−1, pM−1〉

pM−1(xm)p′M (xm)
(A.7)

where

〈f, g〉 =

∫ b

a

w(x)f(x)g(x)dx.

This ensures that the integrals of the first M polynomials multiplied by the weight

function will be exact. Furthermore, it can be shown that the integrals of the next

(M − 1) polynomials are also exact, thus a Gaussian quadrature of order M will

approximate a polynomial of degree (2M − 1) exactly [92].
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Appendix B

Diffusion Analysis for the

Karhunen-Lòeve Expansion of the

Cross Section

B.1 Gaussian Random Process

B.1.1 Variance scaled as O
(

1
ǫ2

)

Applying the diffusion scalings given in Eq. 3.25, setting

vσ ∼ O
(

1

ǫ2

)

and applying the flux expansion

ψ(x, µ) =

∞
∑

m=0

ǫmψ(m)(x, µ)
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to the transport equation (Eq. 2.1) yields:

µ

∞
∑

m=0

ǫm
∂ψ(m)

∂x
+

1

ǫ

(

˜〈σ〉 +
√

ṽσρ(x, ω)
)

×
( ∞
∑

m=0

ǫmψ(m) − 1 − (1 − c)ǫ2

2

∞
∑

m=0

ǫmφ(m)

)

= ǫQ̃(x, µ). (B.1)

where

ρ(x, ω) =

∞
∑

k=1

√
γkϕk(x)ξk(ω)

and γk = λk

ṽσ
(see Eq. 3.12). Multiplying through by ǫ then yields:

µ

∞
∑

m=0

ǫm+1 ∂ψ
(m)

∂x
+σ(x, ω)

( ∞
∑

m=0

ǫmψ(m) − 1 − (1 − c)ǫ2

2

∞
∑

m=0

ǫmφ(m)

)

= ǫ2Q̃(x, µ)

(B.2)

where the stochastic cross section is written as one term,

σ(x, ω) =
(

˜〈σ〉 +
√

ṽσρ(x, ω)
)

,

since its two parts are scaled in the same way.

We now look at the equation for each order of epsilon:

O(1) :

σ(x, ω)

(

ψ(0) − 1

2
φ(0)

)

= 0

ψ(0) =
1

2
φ(0) (B.3)

O(ǫ) :

µ
∂ψ(0)

∂x
+ σ(x, ω)

(

ψ(1) − 1

2
φ(1)

)

= 0
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Apply Eq. B.3:

µ

2

∂φ(0)

∂x
+ σ(x, ω)

(

ψ(1) − 1

2
φ(1)

)

= 0

ψ(1) =
1

2
φ(1) − µ

2σ(x, ω)

∂φ(0)

∂x
(B.4)

O(ǫ2) :

µ
∂ψ(1)

∂x
+ σ(x, ω)

(

ψ(2) − 1

2
φ(2) +

1 − c

2
φ(0)

)

=
Q̃

2

Apply Eq. B.4:

µ

2

∂φ(1)

∂x
− µ2

2σ(x, ω)

∂2φ(0)

∂x2
+ σ(x, ω)

(

ψ(2) − 1

2
φ(2) +

1 − c

2
φ(0)

)

=
Q̃

2

Integrate over µ:

− 1

3σ(x, ω)

∂2φ(0)

∂x2
+ (1 − c)σ(x, ω)φ(0) =

1

2

∫ 1

−1

dµ · Q̃(x, µ) (B.5)

So, finally, a stochastic diffusion equation is achieved:

−D(x, ω)
∂2φ(x)

∂x2
+ σa(x, ω)φ(x) =

1

2

∫ 1

−1

dµ ·Q(x, µ) (B.6)

where D(x, ω) = 1
3σ(x,ω)

and σa(x, ω) = (1 − c)σ(x, ω).

B.1.2 Variance scaled as O
(

1
ǫ

)

Applying the diffusion scalings given in Eq. 3.25, setting

vσ ∼ O
(

1

ǫ

)

and applying the flux expansion

ψ(x, µ) =

∞
∑

m=0

ǫ
m
2 ψ(m)(x, µ)
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to the transport equation (Eq. 2.1) yields:

µ

∞
∑

m=0

ǫ
m
2
∂ψ(m)

∂x
+

(

˜〈σ〉
ǫ

+

√
ṽσ√
ǫ
ρ(x, ω)

)

×
( ∞
∑

m=0

ǫ
m
2 ψ(m) − 1 − (1 − c)ǫ2

2

∞
∑

m=0

ǫ
m
2 φ(m)

)

= ǫQ̃(x, µ). (B.7)

where

ρ(x, ω) =

∞
∑

k=1

√
γkϕk(x)ξk(ω)

and γk = λk

ṽσ
(see Eq. 3.12). Multiplying through by ǫ then yields:

µ

∞
∑

m=0

ǫ
m
2

+1∂ψ
(m)

∂x
+
(

˜〈σ〉 +
√

ǫṽσρ(x, ω)
)

×
( ∞
∑

m=0

ǫ
m
2 ψ(m) − 1 − (1 − c)ǫ2

2

∞
∑

m=0

ǫ
m
2 φ(m)

)

= ǫ2Q̃(x, µ) (B.8)

We now look at the equation for each order of epsilon:

O(1) :

˜〈σ〉
(

ψ(0) − 1

2
φ(0)

)

= 0

ψ(0) =
1

2
φ(0) (B.9)

O(ǫ
1

2 ) :

˜〈σ〉
(

ψ(1) − 1

2
φ(1)

)

+
√

ṽσρ

(

ψ(0) − 1

2
φ(0)

)

= 0

ψ(1) =
1

2
φ(1) (B.10)

O(ǫ) :

µ
∂ψ(0)

∂x
+ ˜〈σ〉

(

ψ(2) − 1

2
φ(2)

)

+
√

ṽσρ

(

ψ(1) − 1

2
φ(1)

)

= 0

143



www.manaraa.com

Appendix B. Diffusion Analysis for the Karhunen-Lòeve Expansion of the Cross Section

Apply Eqs. B.9 and B.10:

µ
∂ψ(0)

∂x
+ ˜〈σ〉

(

ψ(2) − 1

2
φ(2)

)

= 0

ψ(2) =
1

2
φ(2) − µ

2 ˜〈σ〉
∂φ(0)

∂x
(B.11)

O(ǫ
3

2 ) :

µ
∂ψ(1)

∂x
+ ˜〈σ〉

(

ψ(3) − 1

2
φ(3)

)

+
√

ṽσρ

(

ψ(2) − 1

2
φ(2)

)

= 0

Apply Eqs. B.10 and B.11:

µ

2

∂φ(1)

∂x
+ ˜〈σ〉

(

ψ(3) − 1

2
φ(3)

)

+
√

ṽσρ

(

1

2
φ(2) − µ

2 ˜〈σ〉
∂φ(0)

∂x
− 1

2
φ(2)

)

= 0

ψ(3) =
1

2
φ(3) − µ

2 ˜〈σ〉
∂φ(1)

∂x
+
√

ṽσρ
µ

2 ˜〈σ〉
∂φ(0)

∂x

(B.12)

O(ǫ2) :

µ
∂ψ(2)

∂x
+ ˜〈σ〉

(

ψ(4) − 1

2
φ(4)

)

+
√

ṽσρ

(

ψ(3) − 1

2
φ(3)

)

+
1 − c

2
φ(0) =

Q̃

2

Apply Eqs. B.11 and B.12:

µ

2

∂φ(2)

∂x
− µ2

2 ˜〈σ〉
∂2φ(0)

∂x2
+ ˜〈σ〉

(

ψ(4) − 1

2
φ(4) +

1 − c

2
φ(0)

)

+
√

ṽσρ

(

1

2
φ(3) − µ

2 ˜〈σ〉
∂φ(1)

∂x
+
√

ṽσρ
µ

2 ˜〈σ〉
∂φ(0)

∂x
− 1

2
φ(3)

)

=
Q̃

2

Integrate over µ:

− 1

3 ˜〈σ〉
∂2φ(0)

∂x2
+ (1 − c) ˜〈σ〉φ(0) =

1

2

∫ 1

−1

dµ · Q̃(x, µ) (B.13)

So, finally, an analytic diffusion equation is achieved:

−〈D〉∂
2φ(x)

∂x2
+ 〈σa〉φ(x) =

1

2

∫ 1

−1

dµ ·Q(x, µ) (B.14)
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B.2 Log-Normal Random Process

We begin with the cross section scalings given in Eqs. 3.33 and 3.36, which assume

vσ ∼ O
(

1
ǫ

)

:

e〈w(x)〉 =
˜〈σ〉
ǫ

(

1 − ǫỹ

2
+

3(ǫỹ)2

8
+ O(ǫ3)

)

(B.15)

e
√

vwρ(x,ω) = 1 + ρ
√

ǫỹ +
ρ2

2
ǫỹ +

(

ρ3

6
+
ρ

4

)

(ǫỹ)
3
2 +

(

ρ4 − 6ρ2

24

)

(ǫỹ)2 + O(ǫ
5
2 ).

(B.16)

Substituting into the transport equation (Eq. 2.1) and applying the diffusion scalings

given in Eq. 3.25 and the flux expansion

ψ(x, µ) =
∞
∑

m=0

ǫ
m
2 ψ(m)(x, µ)

yields:

µ

∞
∑

m=0

ǫ
m
2
∂ψ(m)

∂x
+

˜〈σ〉
ǫ

(

1 − ǫỹ

2
+

3(ǫỹ)2

8
+ O(ǫ3)

)

×
(

1 + ρ
√

ǫỹ +
ρ2

2
ǫỹ +

(

ρ3

6
+
ρ

4

)

(ǫỹ)
3
2 +

ρ4 − 6ρ2

24
(ǫỹ)2 + O(ǫ

5
2 )

)

×
( ∞
∑

m=0

ǫ
m
2 ψ(m) − 1 − (1 − c)ǫ2

2

∞
∑

m=0

ǫ
m
2 φ(m)

)

= ǫQ̃(x, µ). (B.17)

Multiplying through by ǫ then yields:

µ

∞
∑

m=0

ǫ
m
2

+1∂ψ
(m)

∂x
+ ˜〈σ〉

(

1 − ǫỹ

2
+

3(ǫỹ)2

8
+ O(ǫ3)

)

×
(

1 + ρ
√

ǫỹ +
ρ2

2
ǫỹ +

(

ρ3

6
+
ρ

4

)

(ǫỹ)
3
2 +

ρ4 − 6ρ2

24
(ǫỹ)2 + O(ǫ

5
2 )

)

×
( ∞
∑

m=0

ǫ
m
2 ψ(m) − 1 − (1 − c)ǫ2

2

∞
∑

m=0

ǫ
m
2 φ(m)

)

= ǫ2Q̃(x, µ). (B.18)

We now look at the equation for each order of epsilon:
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O(1) :

˜〈σ〉
(

ψ(0) − 1

2
φ(0)

)

= 0

ψ(0) =
1

2
φ(0) (B.19)

O(ǫ
1

2 ) :

˜〈σ〉
[

ψ(1) − 1

2
φ(1) + ρ

√

ỹ

(

ψ(0) − 1

2
φ(0)

)]

= 0

ψ(1) =
1

2
φ(1) (B.20)

O(ǫ) :

µ
∂ψ(0)

∂x
+ ˜〈σ〉

[

ψ(2) − 1

2
φ(2) + ρ

√

ỹ

(

ψ(1) − 1

2
φ(1)

)

+
(ρ2 − 1)

2
ỹ

(

ψ(0) − 1

2
φ(0)

)]

= 0

Apply Eqs. B.19 and B.20:

µ
∂ψ(0)

∂x
+ ˜〈σ〉

(

ψ(2) − 1

2
φ(2)

)

= 0

ψ(2) =
1

2
φ(2) − µ

2 ˜〈σ〉
∂φ(0)

∂x
(B.21)

O(ǫ
3

2 ) :

µ
∂ψ(1)

∂x
+ ˜〈σ〉

[

ψ(3) − 1

2
φ(3) + ρ

√

ỹ

(

ψ(2) − 1

2
φ(2)

)

+
(ρ2 − 1)

2
ỹ

(

ψ(1) − 1

2
φ(1)

)

+

(

ρ3

6
− ρ

4

)

ỹ
3
2

(

ψ(0) − 1

2
φ(0)

)]

= 0

Apply Eqs. B.19, B.20 and B.21:

µ

2

∂φ(1)

∂x
+ ˜〈σ〉

(

ψ(3) − 1

2
φ(3)

)

− ρ
√

ỹ
µ

2

∂φ(0)

∂x
= 0

ψ(3) =
1

2
φ(3) − µ

2 ˜〈σ〉
∂φ(1)

∂x
+ ρ
√

ỹ
µ

2 ˜〈σ〉
∂φ(0)

∂x
(B.22)
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O(ǫ2) :

µ
∂ψ(2)

∂x
+ ˜〈σ〉

[

ψ(4) − 1

2
φ(4) + ρ

√

ỹ

(

ψ(3) − 1
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Apply Eqs. B.19, B.20, B.21 and B.22:
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Integrate over µ:

− 1
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∂2φ(0)

∂x2
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1

2

∫ 1

−1

dµ · Q̃(x, µ) (B.23)

So, finally, an analytic diffusion equation is achieved:

−〈D〉∂
2φ(x)

∂x2
+ 〈σa〉φ(x) =

1

2

∫ 1

−1

dµ ·Q(x, µ) (B.24)
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Appendix C

Derivative of F with Respect to

ψp,ℓ
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(C.1)

where eijk = 〈ΦiΦpΦk〉 and ψp,ℓ, 1 ≤ ℓ ≤ 2IN , is the ℓth element of ψp, I and N are

the number of spatial cells and quadrature angles, respectively. Expanding the dot

product and eliminating those terms which do not contain the ℓth element of ~ψi and

~ψj yields:
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(C.3)

where m = mod(ℓ, N), 1 ≤ m ≤ N , is the index of the quadrature angle corre-

sponding to ψp,ℓ. Now, those terms which do not contain ψp,ℓ are discarded and the
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Appendix C. Derivative of F with Respect to ψp,ℓ

derivative is taken:
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